Organophosphorus catalysis to bypass phosphine oxide waste.
暂无分享,去创建一个
[1] E. Coyle,et al. Breaking the ring through a room temperature catalytic Wittig reaction. , 2013, Chemistry.
[2] Mark A. J. Huijbregts,et al. On the usefulness of life cycle assessment in early chemical methodology development: the case of organophosphorus-catalyzed Appel and Wittig reactions† , 2013 .
[3] B. Ashfeld,et al. Phosphine-based redox catalysis in the direct traceless Staudinger ligation of carboxylic acids and azides. , 2012, Angewandte Chemie.
[4] F. Rutjes,et al. Catalytic Appel reactions , 2012 .
[5] M. Beller,et al. Highly chemoselective metal-free reduction of phosphine oxides to phosphines. , 2012, Journal of the American Chemical Society.
[6] M. Beller,et al. General and selective copper-catalyzed reduction of tertiary and secondary phosphine oxides: convenient synthesis of phosphines. , 2012, Journal of the American Chemical Society.
[7] F. Rutjes,et al. Organophosphorus-catalysed staudinger reduction , 2012 .
[8] Peter A Byrne,et al. A convenient and mild chromatography-free method for the purification of the products of Wittig and Appel reactions , 2017 .
[9] M. Lemaire,et al. Reduction of phosphine oxides to phosphines with the InBr3/TMDS system , 2012 .
[10] E. Krenske. Theoretical investigation of the mechanisms and stereoselectivities of reductions of acyclic phosphine oxides and sulfides by chlorosilanes. , 2012, The Journal of organic chemistry.
[11] W. Lewis,et al. Phosphonium salt-catalysed synthesis of nitriles from in situ activated oximes , 2012 .
[12] K. Rajendran,et al. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. , 2012, Chemical communications.
[13] Yong Tang,et al. A newly-designed PE-supported arsine for efficient and practical catalytic Wittig olefination. , 2012, Chemical communications.
[14] E. Krenske. Reductions of phosphine oxides and sulfides by perchlorosilanes: evidence for the involvement of donor-stabilized dichlorosilylene. , 2012, The Journal of organic chemistry.
[15] J. Bode,et al. Rethinking amide bond synthesis , 2011, Nature.
[16] F. Rutjes,et al. In situ phosphine oxide reduction: a catalytic Appel reaction. , 2011, Chemistry.
[17] H. Kawakubo,et al. Electroreduction of tetra-coordinate phosphonium derivatives; one-pot transformation of triphenylphosphine oxide into triphenylphosphine , 2011 .
[18] A. J. Blake,et al. Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction. , 2011, The Journal of organic chemistry.
[19] G. Nikonov,et al. Nonhydride mechanism of metal-catalyzed hydrosilylation. , 2011, Journal of the American Chemical Society.
[20] H. Kawakubo,et al. TMSCl-Promoted Electroreductionof Triphenylphosphine Oxide to Triphenylphosphine , 2011 .
[21] K. Woerpel,et al. Phosphine-catalyzed reductions of alkyl silyl peroxides by titanium hydride reducing agents: development of the method and mechanistic investigations. , 2010, The Journal of organic chemistry.
[22] J. An,et al. Phosphine oxide-catalysed chlorination reactions of alcohols under Appel conditions. , 2010, Chemical communications.
[23] M. Kuroboshi,et al. Electroreduction of triphenylphosphine dichloride and the efficient one-pot reductive conversion of phosphine oxide to triphenylphosphine , 2010 .
[24] S. Marsden,et al. Organic synthesis: The Wittig reaction cleans up. , 2009, Nature chemistry.
[25] I. Fairlamb. The phosphine-catalyzed Wittig reaction: a new vista for olefin synthesis? , 2009, ChemSusChem.
[26] L. Bonneviot,et al. Mechanistic Insight into the Reduction of Tertiary Phosphine Oxides by Ti(OiPr)4/TMDS , 2009 .
[27] Lauren J. Kang,et al. Recycling the waste: the development of a catalytic wittig reaction. , 2009, Angewandte Chemie.
[28] D. Cordell,et al. The story of phosphorus: Global food security and food for thought , 2009 .
[29] Chao-Jun Li,et al. Green chemistry for chemical synthesis , 2008, Proceedings of the National Academy of Sciences.
[30] S. Marsden,et al. Catalytic aza-Wittig cyclizations for heteroaromatic synthesis. , 2008, Organic letters.
[31] C. Senanayake,et al. Reduction of tertiary phosphine oxides with DIBAL-H. , 2008, The Journal of organic chemistry.
[32] Yan-Biao Kang,et al. Ph3As-catalyzed wittig-type olefination of aldehydes with diazoacetate in the presence of Na2S2O4. , 2007, The Journal of organic chemistry.
[33] A. Favre-Réguillon,et al. A Catalytic Method for the Reduction of Secondary and Tertiary Phosphine Oxides , 2007 .
[34] John D. Hayler,et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers , 2007 .
[35] K. K. Hii,et al. Applications of phosphine-functionalised polymers in organic synthesis. , 2007, Chemical Society reviews.
[36] R. Lawrence,et al. Phenylsilane as an active amidation reagent for the preparation of carboxamides and peptides , 2006 .
[37] J. Harvey,et al. Reactivity and selectivity in the Wittig reaction: a computational study. , 2006, Journal of the American Chemical Society.
[38] Hai‐Chen Wu,et al. Stereospecific deoxygenation of phosphine oxides with retention of configuration using triphenylphosphine or triethyl phosphite as an oxygen acceptor. , 2004, Organic letters.
[39] D. Curran,et al. Separation-friendly Mitsunobu reactions: a microcosm of recent developments in separation strategies. , 2004, Chemistry.
[40] W. A. Loughlin,et al. The Hendrickson reagent and the Mitsunobu reaction: a mechanistic study. , 2003, Organic & biomolecular chemistry.
[41] C. Lindsley,et al. A general Staudinger protocol for solution-phase parallel synthesis , 2002 .
[42] A. Barrett,et al. ROMPgel-supported triphenylphosphine with potential application in parallel synthesis. , 2002, Organic letters.
[43] D. Curran,et al. Fluorous Mitsunobu reagents and reactions , 2002 .
[44] T. Miura,et al. Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. , 2001, Organic letters.
[45] V. Smil. PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human Interferences , 2000 .
[46] Paul Wyatt,et al. Alane - a chemoselective way to reduce phosphine oxides , 1999 .
[47] S. Buchwald,et al. An Inexpensive Air-Stable Titanium-Based System for the Conversion of Esters to Primary Alcohols , 1995 .
[48] Declan G Gilheany,et al. No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides. , 1994, Chemical reviews.
[49] S. Buchwald,et al. An air-stable catalyst system for the conversion of esters to alcohols. [Erratum to document cited in CA117(3):25599z] , 1993 .
[50] B. Trost,et al. The atom economy--a search for synthetic efficiency. , 1991, Science.
[51] P. Schleyer,et al. Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation , 1990 .
[52] J. B. Hendrickson,et al. Reactions of carboxylic acids with phosphonium anhydrides , 1989 .
[53] J. B. Hendrickson,et al. Seeking the ideal dehydrating reagent , 1987 .
[54] A. Streitwieser,et al. Semipolar P−O and P−C bonds: a theoretical study of hypophosphite and related methylenephosphoranes , 1987 .
[55] L. Abis,et al. Titanium(III) alkoxides. A new synthetic route and solid state properties (CP/MAS 13C NMR, X-ray and IR) , 1986 .
[56] T. Imamoto,et al. FACILE REDUCTION OF ORGANIC HALIDES AND PHOSPHINE OXIDES WITH LiAlH4–CeCl3 , 1985 .
[57] L. D. Quin,et al. Bridged ring systems containing phosphorus: structural influences on the stereochemistry of silane reductions of P-oxides and on carbon-13 and phosphorus-31 NMR properties of phosphines , 1984 .
[58] Mark S. Gordon,et al. Structure, bonding, and internal rotation in phosphine oxide (H3PO), hydroxyphosphine (H2POH), and hydroxyfluorophosphine (HFPOH) , 1984 .
[59] Mitsuo Masaki,et al. Hydrogenolyse von trisubstituierten Dichlorphosphoranen – eine neue Methode zur Desoxygenierung von Oxophosphoranen , 1977 .
[60] M. Stark,et al. 6,7-Diphenyl-2,3-dihydro-1,4-dioxocin† , 1977 .
[61] H. Pommer. Die Wittig‐Reaktion in der industriellen Praxis , 1977 .
[62] H. Pommer. The Wittig Reaction in Industrial Practice , 1977 .
[63] K. Fukui,et al. REACTION OF TERTIARY PHOSPHINE DICHLORIDES WITH THIOLS IN THE PRESENCE OF TRIETHYLAMINE. A CONVENIENT METHOD FOR THE REDUCTION OF PHOSPHINE OXIDES TO PHOSPHINES , 1977 .
[64] R. Appel. Tertiäres Phosphan/Tetrachlormethan, ein vielseitiges Reagens zur Chlorierung, Dehydratisierung und PN‐Verknüpfung , 1975 .
[65] R. Appel. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P ? N Linkage , 1975 .
[66] R. Appel,et al. Reaktionsmechanistische Untersuchungen im Dreikomponentensystem Phosphin/Tetrachlorkohlenstoff/acides Nucleophil , 1975 .
[67] H. Pommer,et al. Industrial synthesis of terpene compounds , 1975 .
[68] K. L. Marsi. Phenylsilane reduction of phosphine oxides with complete stereospecificity , 1974 .
[69] G. Zon,et al. Use of hexachlorodisilane as a reducing agent. Stereospecific deoxygenation of acyclic phosphine oxides , 1969 .
[70] K. Mislow,et al. Stereomutation of phosphine oxides by lithium aluminum hydride , 1969 .
[71] G. Zon,et al. Perchloropolysilanes: novel reducing agents for phosphine oxides and other organic oxides , 1969 .
[72] K. Mitchell. Use of outer d orbitals in bonding , 1969 .
[73] K. Mislow,et al. Synthesis and absolute configuration of optically active phosphine oxides and phosphinates , 1968 .
[74] F. Korte,et al. Reduktion organischer Verbindungen des fünfwertigen Phosphors zu Phosphinen, II. Reduktion tertiärer Phosphinoxyde zu tertiären Phosphinen mit Trichlorsilan , 1964 .
[75] B. Arbusow. Michaelis-Arbusow- und Perkow-Reaktionen , 1964 .
[76] J. J. Monagle. Carbodiimides. III. Conversion of Isocyanates to Carbodiimides. Catalyst Studies , 1962 .
[77] T. Campbell,et al. Carbodiimides. II. Mechanism of the Catalytic Formation from Isocyanates , 1962 .
[78] T. Campbell,et al. Carbodiimides. I. Conversion of Isocyanates to Carbodiimides with Phospholine Oxide Catalyst , 1962 .
[79] T. Campbell,et al. A New Synthesis of Mono- and Polycarbodiimides , 1962 .
[80] L. Horner,et al. Phosphororganische Verbindungen, XVI. Wege zur Darstellung primärer, sekundärer und tertiärer Phosphine , 1958 .
[81] F. Hein,et al. Über die Reduktion von tertiären Phosphinoxyden bzw. ‐sulfiden mit Lithium‐ bzw. Calciumalanat zu den entsprechenden Phosphinen , 1956 .
[82] A. Dobó,et al. One-pot transformation of cyclic phosphine oxides to phosphine–boranes by dimethyl sulfide–borane , 2000 .
[83] N. Lawrence,et al. Titanium (IV) catalysis in the reduction of phosphine oxides , 1994 .
[84] A. Orpen,et al. Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: a test of bonding theories in phosphine complexes , 1991 .
[85] J. B. Hendrickson,et al. Facile Cyclodehydrations of Diols and Amino Alcohols with Phosphonium Anhydrides , 1990 .
[86] J. B. Hendrickson,et al. Facile Dehydration of Activated Ketones to Alkynes , 1989 .
[87] R. Appel,et al. Reaktionen im Zweikomponentensystem Triphenylphosphin/Tetrachlormethan1) , 1976 .
[88] J. B. Hendrickson,et al. Triphenyl phosphine ditriflate: A general oxygen activator , 1975 .
[89] A. Bard,et al. Electrochemistry of organophosphorus compounds. II. Electroreduction of triphenylphosphine and triphenylphosphine oxide , 1968 .
[90] L. Horner,et al. Phosphororganische verbindungen IXL zum sterischen verlauf der desoxygenierung von tertiären phosphinoxyden zu tertiären phosphinen mit trichlorsilan , 1965 .