Organophosphorus catalysis to bypass phosphine oxide waste.

The conversion of oxygen-containing compounds is often achieved by the use of phosphorus reagents. The newly formed phosphine oxide bond delivers the enthalpic gain that drives reactions, such as the Wittig, Mitsunobu, and Appel reaction, to completion. However, phosphine oxides are recognized as undesirable waste products and in the past decade several methods have emerged that address this issue by in situ regeneration of the phosphorus reagent. This Minireview outlines the two distinct strategies and underpinning research that led to these advances. The potential of the emerging field of phosphorus catalysis in chemistry is shown and new developments that may stimulate further research are described.

[1]  E. Coyle,et al.  Breaking the ring through a room temperature catalytic Wittig reaction. , 2013, Chemistry.

[2]  Mark A. J. Huijbregts,et al.  On the usefulness of life cycle assessment in early chemical methodology development: the case of organophosphorus-catalyzed Appel and Wittig reactions† , 2013 .

[3]  B. Ashfeld,et al.  Phosphine-based redox catalysis in the direct traceless Staudinger ligation of carboxylic acids and azides. , 2012, Angewandte Chemie.

[4]  F. Rutjes,et al.  Catalytic Appel reactions , 2012 .

[5]  M. Beller,et al.  Highly chemoselective metal-free reduction of phosphine oxides to phosphines. , 2012, Journal of the American Chemical Society.

[6]  M. Beller,et al.  General and selective copper-catalyzed reduction of tertiary and secondary phosphine oxides: convenient synthesis of phosphines. , 2012, Journal of the American Chemical Society.

[7]  F. Rutjes,et al.  Organophosphorus-catalysed staudinger reduction , 2012 .

[8]  Peter A Byrne,et al.  A convenient and mild chromatography-free method for the purification of the products of Wittig and Appel reactions , 2017 .

[9]  M. Lemaire,et al.  Reduction of phosphine oxides to phosphines with the InBr3/TMDS system , 2012 .

[10]  E. Krenske Theoretical investigation of the mechanisms and stereoselectivities of reductions of acyclic phosphine oxides and sulfides by chlorosilanes. , 2012, The Journal of organic chemistry.

[11]  W. Lewis,et al.  Phosphonium salt-catalysed synthesis of nitriles from in situ activated oximes , 2012 .

[12]  K. Rajendran,et al.  Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. , 2012, Chemical communications.

[13]  Yong Tang,et al.  A newly-designed PE-supported arsine for efficient and practical catalytic Wittig olefination. , 2012, Chemical communications.

[14]  E. Krenske Reductions of phosphine oxides and sulfides by perchlorosilanes: evidence for the involvement of donor-stabilized dichlorosilylene. , 2012, The Journal of organic chemistry.

[15]  J. Bode,et al.  Rethinking amide bond synthesis , 2011, Nature.

[16]  F. Rutjes,et al.  In situ phosphine oxide reduction: a catalytic Appel reaction. , 2011, Chemistry.

[17]  H. Kawakubo,et al.  Electroreduction of tetra-coordinate phosphonium derivatives; one-pot transformation of triphenylphosphine oxide into triphenylphosphine , 2011 .

[18]  A. J. Blake,et al.  Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction. , 2011, The Journal of organic chemistry.

[19]  G. Nikonov,et al.  Nonhydride mechanism of metal-catalyzed hydrosilylation. , 2011, Journal of the American Chemical Society.

[20]  H. Kawakubo,et al.  TMSCl-Promoted Electroreductionof Triphenylphosphine Oxide to Triphenylphosphine , 2011 .

[21]  K. Woerpel,et al.  Phosphine-catalyzed reductions of alkyl silyl peroxides by titanium hydride reducing agents: development of the method and mechanistic investigations. , 2010, The Journal of organic chemistry.

[22]  J. An,et al.  Phosphine oxide-catalysed chlorination reactions of alcohols under Appel conditions. , 2010, Chemical communications.

[23]  M. Kuroboshi,et al.  Electroreduction of triphenylphosphine dichloride and the efficient one-pot reductive conversion of phosphine oxide to triphenylphosphine , 2010 .

[24]  S. Marsden,et al.  Organic synthesis: The Wittig reaction cleans up. , 2009, Nature chemistry.

[25]  I. Fairlamb The phosphine-catalyzed Wittig reaction: a new vista for olefin synthesis? , 2009, ChemSusChem.

[26]  L. Bonneviot,et al.  Mechanistic Insight into the Reduction of Tertiary Phosphine Oxides by Ti(OiPr)4/TMDS , 2009 .

[27]  Lauren J. Kang,et al.  Recycling the waste: the development of a catalytic wittig reaction. , 2009, Angewandte Chemie.

[28]  D. Cordell,et al.  The story of phosphorus: Global food security and food for thought , 2009 .

[29]  Chao-Jun Li,et al.  Green chemistry for chemical synthesis , 2008, Proceedings of the National Academy of Sciences.

[30]  S. Marsden,et al.  Catalytic aza-Wittig cyclizations for heteroaromatic synthesis. , 2008, Organic letters.

[31]  C. Senanayake,et al.  Reduction of tertiary phosphine oxides with DIBAL-H. , 2008, The Journal of organic chemistry.

[32]  Yan-Biao Kang,et al.  Ph3As-catalyzed wittig-type olefination of aldehydes with diazoacetate in the presence of Na2S2O4. , 2007, The Journal of organic chemistry.

[33]  A. Favre-Réguillon,et al.  A Catalytic Method for the Reduction of Secondary and Tertiary Phosphine Oxides , 2007 .

[34]  John D. Hayler,et al.  Key green chemistry research areas—a perspective from pharmaceutical manufacturers , 2007 .

[35]  K. K. Hii,et al.  Applications of phosphine-functionalised polymers in organic synthesis. , 2007, Chemical Society reviews.

[36]  R. Lawrence,et al.  Phenylsilane as an active amidation reagent for the preparation of carboxamides and peptides , 2006 .

[37]  J. Harvey,et al.  Reactivity and selectivity in the Wittig reaction: a computational study. , 2006, Journal of the American Chemical Society.

[38]  Hai‐Chen Wu,et al.  Stereospecific deoxygenation of phosphine oxides with retention of configuration using triphenylphosphine or triethyl phosphite as an oxygen acceptor. , 2004, Organic letters.

[39]  D. Curran,et al.  Separation-friendly Mitsunobu reactions: a microcosm of recent developments in separation strategies. , 2004, Chemistry.

[40]  W. A. Loughlin,et al.  The Hendrickson reagent and the Mitsunobu reaction: a mechanistic study. , 2003, Organic & biomolecular chemistry.

[41]  C. Lindsley,et al.  A general Staudinger protocol for solution-phase parallel synthesis , 2002 .

[42]  A. Barrett,et al.  ROMPgel-supported triphenylphosphine with potential application in parallel synthesis. , 2002, Organic letters.

[43]  D. Curran,et al.  Fluorous Mitsunobu reagents and reactions , 2002 .

[44]  T. Miura,et al.  Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. , 2001, Organic letters.

[45]  V. Smil PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human Interferences , 2000 .

[46]  Paul Wyatt,et al.  Alane - a chemoselective way to reduce phosphine oxides , 1999 .

[47]  S. Buchwald,et al.  An Inexpensive Air-Stable Titanium-Based System for the Conversion of Esters to Primary Alcohols , 1995 .

[48]  Declan G Gilheany,et al.  No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides. , 1994, Chemical reviews.

[49]  S. Buchwald,et al.  An air-stable catalyst system for the conversion of esters to alcohols. [Erratum to document cited in CA117(3):25599z] , 1993 .

[50]  B. Trost,et al.  The atom economy--a search for synthetic efficiency. , 1991, Science.

[51]  P. Schleyer,et al.  Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation , 1990 .

[52]  J. B. Hendrickson,et al.  Reactions of carboxylic acids with phosphonium anhydrides , 1989 .

[53]  J. B. Hendrickson,et al.  Seeking the ideal dehydrating reagent , 1987 .

[54]  A. Streitwieser,et al.  Semipolar P−O and P−C bonds: a theoretical study of hypophosphite and related methylenephosphoranes , 1987 .

[55]  L. Abis,et al.  Titanium(III) alkoxides. A new synthetic route and solid state properties (CP/MAS 13C NMR, X-ray and IR) , 1986 .

[56]  T. Imamoto,et al.  FACILE REDUCTION OF ORGANIC HALIDES AND PHOSPHINE OXIDES WITH LiAlH4–CeCl3 , 1985 .

[57]  L. D. Quin,et al.  Bridged ring systems containing phosphorus: structural influences on the stereochemistry of silane reductions of P-oxides and on carbon-13 and phosphorus-31 NMR properties of phosphines , 1984 .

[58]  Mark S. Gordon,et al.  Structure, bonding, and internal rotation in phosphine oxide (H3PO), hydroxyphosphine (H2POH), and hydroxyfluorophosphine (HFPOH) , 1984 .

[59]  Mitsuo Masaki,et al.  Hydrogenolyse von trisubstituierten Dichlorphosphoranen – eine neue Methode zur Desoxygenierung von Oxophosphoranen , 1977 .

[60]  M. Stark,et al.  6,7-Diphenyl-2,3-dihydro-1,4-dioxocin† , 1977 .

[61]  H. Pommer Die Wittig‐Reaktion in der industriellen Praxis , 1977 .

[62]  H. Pommer The Wittig Reaction in Industrial Practice , 1977 .

[63]  K. Fukui,et al.  REACTION OF TERTIARY PHOSPHINE DICHLORIDES WITH THIOLS IN THE PRESENCE OF TRIETHYLAMINE. A CONVENIENT METHOD FOR THE REDUCTION OF PHOSPHINE OXIDES TO PHOSPHINES , 1977 .

[64]  R. Appel Tertiäres Phosphan/Tetrachlormethan, ein vielseitiges Reagens zur Chlorierung, Dehydratisierung und PN‐Verknüpfung , 1975 .

[65]  R. Appel Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P ? N Linkage , 1975 .

[66]  R. Appel,et al.  Reaktionsmechanistische Untersuchungen im Dreikomponentensystem Phosphin/Tetrachlorkohlenstoff/acides Nucleophil , 1975 .

[67]  H. Pommer,et al.  Industrial synthesis of terpene compounds , 1975 .

[68]  K. L. Marsi Phenylsilane reduction of phosphine oxides with complete stereospecificity , 1974 .

[69]  G. Zon,et al.  Use of hexachlorodisilane as a reducing agent. Stereospecific deoxygenation of acyclic phosphine oxides , 1969 .

[70]  K. Mislow,et al.  Stereomutation of phosphine oxides by lithium aluminum hydride , 1969 .

[71]  G. Zon,et al.  Perchloropolysilanes: novel reducing agents for phosphine oxides and other organic oxides , 1969 .

[72]  K. Mitchell Use of outer d orbitals in bonding , 1969 .

[73]  K. Mislow,et al.  Synthesis and absolute configuration of optically active phosphine oxides and phosphinates , 1968 .

[74]  F. Korte,et al.  Reduktion organischer Verbindungen des fünfwertigen Phosphors zu Phosphinen, II. Reduktion tertiärer Phosphinoxyde zu tertiären Phosphinen mit Trichlorsilan , 1964 .

[75]  B. Arbusow Michaelis-Arbusow- und Perkow-Reaktionen , 1964 .

[76]  J. J. Monagle Carbodiimides. III. Conversion of Isocyanates to Carbodiimides. Catalyst Studies , 1962 .

[77]  T. Campbell,et al.  Carbodiimides. II. Mechanism of the Catalytic Formation from Isocyanates , 1962 .

[78]  T. Campbell,et al.  Carbodiimides. I. Conversion of Isocyanates to Carbodiimides with Phospholine Oxide Catalyst , 1962 .

[79]  T. Campbell,et al.  A New Synthesis of Mono- and Polycarbodiimides , 1962 .

[80]  L. Horner,et al.  Phosphororganische Verbindungen, XVI. Wege zur Darstellung primärer, sekundärer und tertiärer Phosphine , 1958 .

[81]  F. Hein,et al.  Über die Reduktion von tertiären Phosphinoxyden bzw. ‐sulfiden mit Lithium‐ bzw. Calciumalanat zu den entsprechenden Phosphinen , 1956 .

[82]  A. Dobó,et al.  One-pot transformation of cyclic phosphine oxides to phosphine–boranes by dimethyl sulfide–borane , 2000 .

[83]  N. Lawrence,et al.  Titanium (IV) catalysis in the reduction of phosphine oxides , 1994 .

[84]  A. Orpen,et al.  Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: a test of bonding theories in phosphine complexes , 1991 .

[85]  J. B. Hendrickson,et al.  Facile Cyclodehydrations of Diols and Amino Alcohols with Phosphonium Anhydrides , 1990 .

[86]  J. B. Hendrickson,et al.  Facile Dehydration of Activated Ketones to Alkynes , 1989 .

[87]  R. Appel,et al.  Reaktionen im Zweikomponentensystem Triphenylphosphin/Tetrachlormethan1) , 1976 .

[88]  J. B. Hendrickson,et al.  Triphenyl phosphine ditriflate: A general oxygen activator , 1975 .

[89]  A. Bard,et al.  Electrochemistry of organophosphorus compounds. II. Electroreduction of triphenylphosphine and triphenylphosphine oxide , 1968 .

[90]  L. Horner,et al.  Phosphororganische verbindungen IXL zum sterischen verlauf der desoxygenierung von tertiären phosphinoxyden zu tertiären phosphinen mit trichlorsilan , 1965 .