Second-order structure function in fully developed turbulence.

We relate the second-order structure function of a time series with the power spectrum of the original variable, taking an assumption of statistical stationarity. With this approach, we find that the structure function is strongly influenced by the large scales. The large-scale contribution and the contribution range are, respectively, 79% and 1.4 decades for a Kolmogorov -5/3 power spectrum. We show numerically that a single scale influence range, over smaller scales is about 2 decades. We argue that the structure function is not a good method to extract the scaling exponents when the data possess large energetic scales. An alternative methodology, the arbitrary order Hilbert spectral analysis which may constrain this influence within 0.3 decade, is proposed to characterize the scaling property directly in an amplitude-frequency space. An analysis of passive scalar (temperature) turbulence time series is presented to show the influence of large-scale structures in real turbulence and the efficiency of the Hilbert-based methodology. The corresponding scaling exponents ζ(θ)(q) provided by the Hilbert-based approach indicate that the passive scalar turbulence field may be less intermittent than what was previously believed.

[1]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  F. Schmitt,et al.  Multifractal analysis of foreign exchange data , 1999 .

[3]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[4]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[5]  L. Mydlarski,et al.  Effect of the scalar injection mechanism on passive scalar structure functions in a turbulent flow. , 2009, Physical review letters.

[6]  Yongxiang Huang,et al.  Analyse de l’invariance d’échelle de séries temporelles par la décomposition modale empirique et l’analyse spectrale de Hilbert , 2008 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[9]  Roberto Benzi,et al.  Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity , 1996 .

[10]  Gabriel Rilling,et al.  Sampling Effects on the Empirical Mode Decomposition , 2009, Adv. Data Sci. Adapt. Anal..

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Yongxiang Huang,et al.  Analysis of daily river flow fluctuations using Empirical Mode Decomposition and arbitrary order Hilbert spectral analysis , 2009 .

[13]  Vergassola,et al.  Universality and saturation of intermittency in passive scalar turbulence , 2000, Physical review letters.

[14]  T. Hou,et al.  Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces , 1998 .

[15]  Katepalli R. Sreenivasan,et al.  On local isotropy of passive scalars in turbulent shear flows , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Shaun Lovejoy,et al.  Multifractal analysis of the Greenland Ice‐Core Project climate data , 1995 .

[17]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[18]  François G. Schmitt,et al.  Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence , 2005 .

[19]  Z. Warhaft Passive Scalars in Turbulent Flows , 2000 .

[20]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[21]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[22]  Gabriel Rilling,et al.  One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.

[23]  N. Huang,et al.  A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Lohse,et al.  Anisotropy and scaling corrections in turbulence. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  François G. Schmitt,et al.  Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition , 2009 .

[26]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[27]  Y. X. Huang,et al.  Autocorrelation function of velocity increments time series in fully developed turbulence , 2009 .

[28]  Mark Nelkin,et al.  Universality and scaling in fully developed turbulence , 1994 .

[29]  D. Lohse,et al.  Small-Scale Properties of Turbulent Rayleigh-Bénard Convection , 2010 .

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  Lohse,et al.  Bottleneck effects in turbulence: Scaling phenomena in r versus p space. , 1994, Physical review letters.

[32]  Y. X. Huang,et al.  An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis , 2008, 1401.4211.

[33]  D. Percival,et al.  Should Structure Functions Be Used to Estimate Power Laws in Turbulence? A Comparative Study , 2008 .