Phase transition dimensionality crossover from two to three dimensions in a trapped ultracold atomic Bose gas
暂无分享,去创建一个
[1] S. Danisch,et al. Makie.jl: Flexible high-performance data visualization for Julia , 2021, J. Open Source Softw..
[2] F. Dalfovo,et al. Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture , 2020, 2010.01933.
[3] F. Dalfovo,et al. Kibble-Zurek dynamics in a trapped ultracold Bose gas , 2020, Physical Review Research.
[4] M. J. Ventura. Ordering , 2019, Modes of Liability in International Criminal Law.
[5] F. Dalfovo,et al. Quench dynamics of an ultracold two-dimensional Bose gas , 2019, Physical Review A.
[6] M. Brewczyk,et al. Signatures of a universal jump in the superfluid density of a two-dimensional Bose gas with a finite number of particles , 2018, Physical Review A.
[7] T. Simula,et al. Order from chaos: Observation of large-scale flow from turbulence in a two-dimensional superfluid , 2018, 1801.06952.
[8] Matthew J. Davis,et al. Giant vortex clusters in a two-dimensional quantum fluid , 2018, Science.
[9] F. Larcher. Dynamical excitations in low-dimensional condensates: sound, vortices and quenched dynamics , 2018 .
[10] J. Ville. Quantum gases in box potentials : sound and light in bosonic Flatland , 2018 .
[11] F. Dalfovo,et al. Collisionless Sound in a Uniform Two-Dimensional Bose Gas. , 2018, Physical review letters.
[12] J. Dalibard,et al. Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas. , 2018, Physical review letters.
[13] F. Dalfovo,et al. Dynamical equilibration across a quenched phase transition in a trapped quantum gas , 2017, Communications Physics.
[14] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[15] J. Dalibard,et al. Dynamic Kosterlitz-Thouless transition in two-dimensional Bose mixtures of ultracold atoms , 2011, 1112.1204.
[16] T. Gasenzer,et al. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas , 2016, 1611.01163.
[17] L. Cugliandolo,et al. Quench dynamics of the three-dimensional U(1) complex field theory: Geometric and scaling characterizations of the vortex tangle. , 2016, Physical review. E.
[18] L. Cugliandolo,et al. Thermal quenches in the stochastic Gross-Pitaevskii equation: Morphology of the vortex network , 2016, 1606.03262.
[19] Sandro Stringari,et al. Bose-Einstein condensation and superfluidity , 2016 .
[20] Robert P. Smith,et al. Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas. , 2015, Physical Review Letters.
[21] J. Dalibard,et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas , 2014, Nature Communications.
[22] N. Berloff,et al. Modeling quantum fluid dynamics at nonzero temperatures , 2014, Proceedings of the National Academy of Sciences.
[23] Wojciech H. Zurek,et al. Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.
[24] Ashton S. Bradley,et al. Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates. , 2013, Physical review letters.
[25] S. Seo,et al. Observation of thermally activated vortex pairs in a quasi-2D Bose gas. , 2012, Physical review letters.
[26] Ashton S. Bradley,et al. Persistent-current formation in a high-temperature Bose-Einstein condensate: An experimental test for classical-field theory , 2012, 1208.4421.
[27] N. Proukakis,et al. Ab initio methods for finite-temperature two-dimensional Bose gases , 2012, 1206.5787.
[28] V. L. Berezinskit. DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .
[29] Ashton S. Bradley,et al. Observation of vortex dipoles in an oblate Bose-Einstein condensate. , 2009, Physical review letters.
[30] Ashton S. Bradley,et al. Decay of a quantum vortex: Test of nonequilibrium theories for warm Bose-Einstein condensates , 2009, 0912.3300.
[31] Matthew J. Davis,et al. Vortex pairing in two-dimensional Bose gases , 2009, 0912.1675.
[32] Bogdan Damski,et al. Soliton creation during a Bose-Einstein condensation. , 2009, Physical review letters.
[33] J. Dalibard,et al. Two-dimensional Bose fluids: An atomic physics perspective , 2009, 0912.1490.
[34] P. B. Blakie,et al. Transition region properties of a trapped quasi-two-dimensional degenerate Bose gas , 2009, 0906.2610.
[35] N. Proukakis,et al. The stochastic Gross-Pitaevskii equation and some applications , 2008, 0812.1926.
[36] P. B. Blakie,et al. Critical properties of a trapped interacting Bose gas , 2008, 0812.1332.
[37] T. Simula,et al. Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas , 2008, 0804.0286.
[38] Nick P. Proukakis,et al. Finite-temperature models of Bose–Einstein condensation , 2008, 0810.0210.
[39] C. W. Gardiner,et al. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.
[40] Brian P. Anderson,et al. Spontaneous vortices in the formation of Bose–Einstein condensates , 2008, Nature.
[41] P. B. Blakie. Numerical method for evolving the projected Gross-Pitaevskii equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[42] Ashton S. Bradley,et al. Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation , 2007, Physical Review A.
[43] T. Simula,et al. Superfluidity of an interacting trapped quasi-two-dimensional Bose gas , 2007, 0711.1423.
[44] J. Dalibard,et al. The trapped two-dimensional Bose gas: from Bose–Einstein condensation to Berezinskii–Kosterlitz–Thouless physics , 2007, 0712.1265.
[45] J. Dalibard,et al. Critical point of an interacting two-dimensional atomic Bose gas. , 2007, Physical review letters.
[46] Baptiste Battelier,et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.
[47] T. Simula,et al. Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. , 2005, Physical review letters.
[48] Matthew J. Davis,et al. Critical temperature of a trapped Bose gas: comparison of theory and experiment. , 2005, Physical review letters.
[49] D. Gangardt,et al. Low-dimensional trapped gases , 2004, cond-mat/0409230.
[50] N. Proukakis. Coherence of trapped one-dimensional (quasi-)condensates and acontinuous atom lasers in waveguides , 2003, cond-mat/0311003.
[51] M. J. Davis,et al. Microcanonical temperature for a classical field: Application to Bose-Einstein condensation , 2003, cond-mat/0307155.
[52] H. Stoof,et al. Dimensional and temperature crossover in trapped Bose gases , 2003, cond-mat/0303483.
[53] N. Proukakis,et al. Erratum: low dimensional Bose gases , 2002 .
[54] B. Svistunov,et al. Two-dimensional weakly interacting Bose gas in the fluctuation region , 2002, cond-mat/0206223.
[55] Matthew J. Davis,et al. The stochastic Gross?Pitaevskii equation: II , 2002, cond-mat/0308044.
[56] N. Proukakis,et al. Low dimensional Bose gases , 2002, cond-mat/0202085.
[57] K. Burnett,et al. Simulations of thermal Bose fields in the classical limit , 2002, cond-mat/0201571.
[58] H. Stoof,et al. Phase fluctuations in atomic Bose gases. , 2001, Physical review letters.
[59] B. V. Zyl,et al. Dilute Bose gas in a quasi-two-dimensional trap , 2001, cond-mat/0106410.
[60] R. Duine,et al. Stochastic dynamics of a trapped Bose-Einstein condensate , 2001, cond-mat/0107432.
[61] B. Svistunov,et al. Critical point of a weakly interacting two-dimensional Bose gas. , 2001, Physical review letters.
[62] T. Gustavson,et al. Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.
[63] G. Shlyapnikov,et al. Phase-fluctuating 3D Bose-Einstein condensates in elongated traps. , 2001, Physical review letters.
[64] M. Hasenbusch,et al. Critical behavior of the three-dimensional XY universality class , 2000, cond-mat/0010360.
[65] H. Stoof,et al. Dynamics of Fluctuating Bose–Einstein Condensates , 2000, cond-mat/0007026.
[66] Holzmann,et al. Bose-einstein condensation in quasi-2D trapped gases , 1999, Physical review letters.
[67] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[68] W. Mullin,et al. Bose-Einstein condensation in a harmonic potential , 1996, cond-mat/9610005.
[69] Giorgini,et al. Condensate fraction and critical temperature of a trapped interacting Bose gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[70] Boris Svistunov,et al. Kinetics of bose condensation in an interacting bose gas , 1992 .
[71] Fisher,et al. Dilute Bose gas in two dimensions. , 1988, Physical review. B, Condensed matter.
[72] Kurt Binder,et al. Finite size scaling analysis of ising model block distribution functions , 1981 .
[73] L. Reichl. A modern course in statistical physics , 1980 .
[74] D. Thouless,et al. Ordering, metastability and phase transitions in two-dimensional systems , 1973 .
[75] P. Hohenberg. Existence of Long-Range Order in One and Two Dimensions , 1967 .
[76] N. Mermin,et al. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .
[77] O. Penrose,et al. Bose-Einstein Condensation and Liquid Helium , 1956 .