Phase transition dimensionality crossover from two to three dimensions in a trapped ultracold atomic Bose gas

The equilibrium properties of a weakly interacting atomic Bose gas across the Berezinskii-Kosterlitz-Thouless (BKT) and Bose-Einstein condensation (BEC) phase transitions are numerically investigated through a dimensionality crossover from two to three dimensions. The crossover is realised by confining the gas in an experimentally feasible hybridised trap which provides homo-geneity along the planar xy -directions through a box potential in tandem with a harmonic transverse potential along the transverse z -direction. The dimensionality is modified by varying the frequency of the harmonic trap from tight to loose transverse trapping. Our findings, based on a stochastic (projected) Gross-Pitaevskii equation, showcase a continuous shift in the character of the phase transition from BKT to BEC, and a monotonic increase of the identified critical temperature as a function of dimensionality, with the strongest variation exhibited for small chemical potential values up to approximately twice the transverse confining potential.

[1]  S. Danisch,et al.  Makie.jl: Flexible high-performance data visualization for Julia , 2021, J. Open Source Softw..

[2]  F. Dalfovo,et al.  Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture , 2020, 2010.01933.

[3]  F. Dalfovo,et al.  Kibble-Zurek dynamics in a trapped ultracold Bose gas , 2020, Physical Review Research.

[4]  M. J. Ventura Ordering , 2019, Modes of Liability in International Criminal Law.

[5]  F. Dalfovo,et al.  Quench dynamics of an ultracold two-dimensional Bose gas , 2019, Physical Review A.

[6]  M. Brewczyk,et al.  Signatures of a universal jump in the superfluid density of a two-dimensional Bose gas with a finite number of particles , 2018, Physical Review A.

[7]  T. Simula,et al.  Order from chaos: Observation of large-scale flow from turbulence in a two-dimensional superfluid , 2018, 1801.06952.

[8]  Matthew J. Davis,et al.  Giant vortex clusters in a two-dimensional quantum fluid , 2018, Science.

[9]  F. Larcher Dynamical excitations in low-dimensional condensates: sound, vortices and quenched dynamics , 2018 .

[10]  J. Ville Quantum gases in box potentials : sound and light in bosonic Flatland , 2018 .

[11]  F. Dalfovo,et al.  Collisionless Sound in a Uniform Two-Dimensional Bose Gas. , 2018, Physical review letters.

[12]  J. Dalibard,et al.  Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas. , 2018, Physical review letters.

[13]  F. Dalfovo,et al.  Dynamical equilibration across a quenched phase transition in a trapped quantum gas , 2017, Communications Physics.

[14]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[15]  J. Dalibard,et al.  Dynamic Kosterlitz-Thouless transition in two-dimensional Bose mixtures of ultracold atoms , 2011, 1112.1204.

[16]  T. Gasenzer,et al.  Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas , 2016, 1611.01163.

[17]  L. Cugliandolo,et al.  Quench dynamics of the three-dimensional U(1) complex field theory: Geometric and scaling characterizations of the vortex tangle. , 2016, Physical review. E.

[18]  L. Cugliandolo,et al.  Thermal quenches in the stochastic Gross-Pitaevskii equation: Morphology of the vortex network , 2016, 1606.03262.

[19]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[20]  Robert P. Smith,et al.  Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas. , 2015, Physical Review Letters.

[21]  J. Dalibard,et al.  Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas , 2014, Nature Communications.

[22]  N. Berloff,et al.  Modeling quantum fluid dynamics at nonzero temperatures , 2014, Proceedings of the National Academy of Sciences.

[23]  Wojciech H. Zurek,et al.  Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.

[24]  Ashton S. Bradley,et al.  Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates. , 2013, Physical review letters.

[25]  S. Seo,et al.  Observation of thermally activated vortex pairs in a quasi-2D Bose gas. , 2012, Physical review letters.

[26]  Ashton S. Bradley,et al.  Persistent-current formation in a high-temperature Bose-Einstein condensate: An experimental test for classical-field theory , 2012, 1208.4421.

[27]  N. Proukakis,et al.  Ab initio methods for finite-temperature two-dimensional Bose gases , 2012, 1206.5787.

[28]  V. L. Berezinskit DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .

[29]  Ashton S. Bradley,et al.  Observation of vortex dipoles in an oblate Bose-Einstein condensate. , 2009, Physical review letters.

[30]  Ashton S. Bradley,et al.  Decay of a quantum vortex: Test of nonequilibrium theories for warm Bose-Einstein condensates , 2009, 0912.3300.

[31]  Matthew J. Davis,et al.  Vortex pairing in two-dimensional Bose gases , 2009, 0912.1675.

[32]  Bogdan Damski,et al.  Soliton creation during a Bose-Einstein condensation. , 2009, Physical review letters.

[33]  J. Dalibard,et al.  Two-dimensional Bose fluids: An atomic physics perspective , 2009, 0912.1490.

[34]  P. B. Blakie,et al.  Transition region properties of a trapped quasi-two-dimensional degenerate Bose gas , 2009, 0906.2610.

[35]  N. Proukakis,et al.  The stochastic Gross-Pitaevskii equation and some applications , 2008, 0812.1926.

[36]  P. B. Blakie,et al.  Critical properties of a trapped interacting Bose gas , 2008, 0812.1332.

[37]  T. Simula,et al.  Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas , 2008, 0804.0286.

[38]  Nick P. Proukakis,et al.  Finite-temperature models of Bose–Einstein condensation , 2008, 0810.0210.

[39]  C. W. Gardiner,et al.  Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.

[40]  Brian P. Anderson,et al.  Spontaneous vortices in the formation of Bose–Einstein condensates , 2008, Nature.

[41]  P. B. Blakie Numerical method for evolving the projected Gross-Pitaevskii equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Ashton S. Bradley,et al.  Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation , 2007, Physical Review A.

[43]  T. Simula,et al.  Superfluidity of an interacting trapped quasi-two-dimensional Bose gas , 2007, 0711.1423.

[44]  J. Dalibard,et al.  The trapped two-dimensional Bose gas: from Bose–Einstein condensation to Berezinskii–Kosterlitz–Thouless physics , 2007, 0712.1265.

[45]  J. Dalibard,et al.  Critical point of an interacting two-dimensional atomic Bose gas. , 2007, Physical review letters.

[46]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[47]  T. Simula,et al.  Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. , 2005, Physical review letters.

[48]  Matthew J. Davis,et al.  Critical temperature of a trapped Bose gas: comparison of theory and experiment. , 2005, Physical review letters.

[49]  D. Gangardt,et al.  Low-dimensional trapped gases , 2004, cond-mat/0409230.

[50]  N. Proukakis Coherence of trapped one-dimensional (quasi-)condensates and acontinuous atom lasers in waveguides , 2003, cond-mat/0311003.

[51]  M. J. Davis,et al.  Microcanonical temperature for a classical field: Application to Bose-Einstein condensation , 2003, cond-mat/0307155.

[52]  H. Stoof,et al.  Dimensional and temperature crossover in trapped Bose gases , 2003, cond-mat/0303483.

[53]  N. Proukakis,et al.  Erratum: low dimensional Bose gases , 2002 .

[54]  B. Svistunov,et al.  Two-dimensional weakly interacting Bose gas in the fluctuation region , 2002, cond-mat/0206223.

[55]  Matthew J. Davis,et al.  The stochastic Gross?Pitaevskii equation: II , 2002, cond-mat/0308044.

[56]  N. Proukakis,et al.  Low dimensional Bose gases , 2002, cond-mat/0202085.

[57]  K. Burnett,et al.  Simulations of thermal Bose fields in the classical limit , 2002, cond-mat/0201571.

[58]  H. Stoof,et al.  Phase fluctuations in atomic Bose gases. , 2001, Physical review letters.

[59]  B. V. Zyl,et al.  Dilute Bose gas in a quasi-two-dimensional trap , 2001, cond-mat/0106410.

[60]  R. Duine,et al.  Stochastic dynamics of a trapped Bose-Einstein condensate , 2001, cond-mat/0107432.

[61]  B. Svistunov,et al.  Critical point of a weakly interacting two-dimensional Bose gas. , 2001, Physical review letters.

[62]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[63]  G. Shlyapnikov,et al.  Phase-fluctuating 3D Bose-Einstein condensates in elongated traps. , 2001, Physical review letters.

[64]  M. Hasenbusch,et al.  Critical behavior of the three-dimensional XY universality class , 2000, cond-mat/0010360.

[65]  H. Stoof,et al.  Dynamics of Fluctuating Bose–Einstein Condensates , 2000, cond-mat/0007026.

[66]  Holzmann,et al.  Bose-einstein condensation in quasi-2D trapped gases , 1999, Physical review letters.

[67]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[68]  W. Mullin,et al.  Bose-Einstein condensation in a harmonic potential , 1996, cond-mat/9610005.

[69]  Giorgini,et al.  Condensate fraction and critical temperature of a trapped interacting Bose gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[70]  Boris Svistunov,et al.  Kinetics of bose condensation in an interacting bose gas , 1992 .

[71]  Fisher,et al.  Dilute Bose gas in two dimensions. , 1988, Physical review. B, Condensed matter.

[72]  Kurt Binder,et al.  Finite size scaling analysis of ising model block distribution functions , 1981 .

[73]  L. Reichl A modern course in statistical physics , 1980 .

[74]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[75]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[76]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[77]  O. Penrose,et al.  Bose-Einstein Condensation and Liquid Helium , 1956 .