Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions.

Based on the theory of asymptotic analysis, we prove that the viscous stress tensor computed with the lattice Boltzmann equation (LBE) in a two-dimensional domain is indeed second-order accurate in space. We only consider simple bounce-back boundary conditions which can be reduced to the periodic boundary conditions by using the method of image. While the LBE with nine velocities on two-dimensional square lattice (i.e., the D2Q9 model) and with the Bhatnagar-Gross-Krook collision model is used as an example in this work, our proof can be extended to the LBE with any linear relaxation collision models in both two and three dimensions.

[1]  Yan Peng,et al.  A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions , 2007, J. Comput. Phys..

[2]  J. Koelman,et al.  A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow , 1991 .

[3]  Li-Shi Luo,et al.  Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows , 2003, Journal of Fluid Mechanics.

[4]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Zhaoxia Yang,et al.  Convergence of lattice Boltzmann methods for Navier–Stokes flows in periodic and bounded domains , 2009, Numerische Mathematik.

[6]  Axel Klar,et al.  A Stability Notion for Lattice Boltzmann Equations , 2006, SIAM J. Sci. Comput..

[7]  Paul J. Dellar,et al.  An interpretation and derivation of the lattice Boltzmann method using Strang splitting , 2013, Comput. Math. Appl..

[8]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[9]  Zhaoxia Yang,et al.  Asymptotic Analysis of Lattice Boltzmann Boundary Conditions , 2005 .

[10]  Dominique d'Humières,et al.  Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to "magic" collision numbers , 2009, Comput. Math. Appl..

[11]  Lin Liu,et al.  Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces , 2010, J. Comput. Phys..

[12]  P. Dellar Bulk and shear viscosities in lattice Boltzmann equations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Wen-An Yong,et al.  An Onsager-like relation for the lattice Boltzmann method , 2008, Comput. Math. Appl..

[14]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[15]  Paul J. Dellar,et al.  Incompressible limits of lattice Boltzmann equations using multiple relaxation times , 2003 .

[16]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[17]  Li-Shi Luo,et al.  Analytic Solutions of Linearized Lattice Boltzmann Equation for Simple Flows , 1997 .

[18]  W. Shyy,et al.  Viscous flow computations with the method of lattice Boltzmann equation , 2003 .

[19]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[20]  Yan Peng,et al.  Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics , 2010 .

[21]  D. Raabe,et al.  Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[23]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Taehun Lee,et al.  Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method , 2010 .

[25]  Wen-An Yong,et al.  Weighted L2-Stability of the Lattice Boltzmann Method , 2009, SIAM J. Numer. Anal..

[26]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[27]  Manfred Krafczyk,et al.  Rotation of spheroidal particles in Couette flows , 2012, Journal of Fluid Mechanics.

[28]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[29]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[30]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Andre Peters,et al.  Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model , 2008 .

[33]  Yan Peng,et al.  Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[35]  Wen-An Yong,et al.  Rigorous Navier–Stokes limit of the lattice Boltzmann equation , 2003 .

[36]  Li-Shi Luo,et al.  Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow , 2002 .

[37]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[38]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[39]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[40]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[41]  Jonas Tölke,et al.  Lattice Boltzmann simulations of binary fluid flow through porous media , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.