Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector

[1]  Allen W. Zhang,et al.  Ovarian cancer mutational processes drive site-specific immune evasion , 2022, Nature.

[2]  F. Ginhoux,et al.  Reclassifying plasmacytoid dendritic cells as innate lymphocytes , 2022, Nature Reviews Immunology.

[3]  J. Park,et al.  Cross-tissue immune cell analysis reveals tissue-specific features in humans , 2022, Science.

[4]  Hezhe Lu,et al.  TGF-β Signaling and Resistance to Cancer Therapy , 2021, Frontiers in Cell and Developmental Biology.

[5]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[6]  Kieran R. Campbell,et al.  Clonal fitness inferred from time-series modelling of single-cell cancer genomes , 2021, Nature.

[7]  P. Zandstra,et al.  IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data , 2021, bioRxiv.

[8]  J. Li,et al.  Statistics or biology: the zero-inflation controversy about scRNA-seq data , 2020, Genome Biology.

[9]  C. Rubio-Perez,et al.  A single-cell tumor immune atlas for precision oncology , 2020, bioRxiv.

[10]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[11]  M Dugas,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2020, Nature Methods.

[12]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[13]  An-Yuan Guo,et al.  hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets , 2019, bioRxiv.

[14]  Kieran R. Campbell,et al.  Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling , 2019, Nature Methods.

[15]  Kamil Slowikowski,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2019, Nature Methods.

[16]  Lior Pachter,et al.  Interpretable factor models of single-cell RNA-seq via variational autoencoders , 2019, bioRxiv.

[17]  Hiroyuki Sato,et al.  Benchmarking principal component analysis for large-scale single-cell RNA-sequencing , 2019, Genome Biology.

[18]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[19]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[20]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[21]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[22]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[23]  Jingcheng Du,et al.  Gene2vec: distributed representation of genes based on co-expression , 2018, BMC Genomics.

[24]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[25]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[26]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[27]  H. Saya,et al.  The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer , 2017, Oncotarget.

[28]  Thalia E. Chan,et al.  Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures , 2016, bioRxiv.

[29]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[30]  Andrea Califano,et al.  ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information , 2016, Bioinform..

[31]  Su In Lee,et al.  FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells , 2015, Oncotarget.

[32]  Zhen-hua Hu,et al.  Expression of FOXP1 in epithelial ovarian cancer (EOC) and its correlation with chemotherapy resistance and prognosis , 2015, Tumor Biology.

[33]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[34]  Zhen-hua Hu,et al.  Gene expression profile analysis identifies metastasis and chemoresistance-associated genes in epithelial ovarian carcinoma cells , 2014, Medical Oncology.

[35]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[36]  Michael M Gottesman,et al.  Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes , 2012, Pharmacological Reviews.

[37]  O. Gires,et al.  EpCAM and its potential role in tumor-initiating cells , 2012, Cell adhesion & migration.

[38]  M. Quinn,et al.  Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell‐like profile , 2011, Journal of cellular biochemistry.

[39]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[40]  K. Uzawa,et al.  Identification of cisplatin‐resistance related genes in head and neck squamous cell carcinoma , 2010, International journal of cancer.

[41]  Ping Zhang,et al.  Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line , 2006, BMC Cancer.

[42]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[43]  P B Laub,et al.  Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells , 2005, British Journal of Cancer.

[44]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.