A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows

A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and tested in large eddy simulations (LES) of high-Reynolds number boundary layer flows over homogeneous and heterogeneous rough surfaces. The model is based on the Lagrangian dynamic Smagorinsky model in which required averages are accumulated in time, following fluid trajectories of the resolved velocity field. The model allows for scale dependence of the coefficient by including a second test-filtering operation to determine how the coefficient changes as a function of scale. The model also uses the empirical observation that when scale dependence occurs (such as when the filter scale approaches the limits of the inertial range), the classic dynamic model yields the coefficient value appropriate for the test-filter scale. Validation tests in LES of high Reynolds number, rough wall, boundary layer flow are performed at various resolutions. Results are compared with other eddy-viscosity subgrid-scale models. Unlike the...

[1]  M. Parlange,et al.  Surface length scales and shear stress: Implications for land‐atmosphere interaction over complex terrain , 1999 .

[2]  A. Perry,et al.  An experimental study of the turbulence structure in smooth- and rough-wall boundary layers , 1987, Journal of Fluid Mechanics.

[3]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[4]  E. F. Bradley A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness , 1968 .

[5]  Charles Meneveau,et al.  On the Lagrangian nature of the turbulence energy cascade , 1994 .

[6]  J. Wyngaard,et al.  The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness , 1974 .

[7]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[8]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[9]  W. Schofield Turbulent Shear Flows Over a Step Change in Surface Roughness , 1981 .

[10]  W. Brutsaert Land‐surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales , 1998 .

[11]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[12]  Toshio Kobayashi,et al.  A numerical study on the eddy structures of impinging jets excited at the inlet , 2003 .

[13]  A. Smits,et al.  Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow. , 2002, Physical review letters.

[14]  J. Deardorff Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer , 1974 .

[15]  P. Mason Large‐eddy simulation: A critical review of the technique , 1994 .

[16]  K. Jansen,et al.  Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines , 2000 .

[17]  Elias Balaras,et al.  Scale-Similar Models for Large-Eddy Simulations , 1999 .

[18]  S. Orszag Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation , 1970 .

[19]  U. Schumann,et al.  Large‐eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes , 1994 .

[20]  Laurent Blin,et al.  Large eddy simulation of turbulent flows in reversing systems , 2003 .

[21]  C. Moeng A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence , 1984 .

[22]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[23]  Charles Meneveau,et al.  Effects of the Similarity Model in Finite-Difference LES of Isotropic Turbulence Using a Lagrangian Dynamic Mixed Model , 1999 .

[24]  Chad W. Higgins,et al.  Alignment Trends of Velocity Gradients and Subgrid-Scale Fluxes in the Turbulent Atmospheric Boundary Layer , 2003 .

[25]  P. J. Mason,et al.  On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow , 1986, Journal of Fluid Mechanics.

[26]  Charles Meneveau,et al.  Large‐eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness , 2004 .

[27]  A. Yaglom,et al.  Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification , 1991 .

[28]  C. Meneveau,et al.  A Lagrangian dynamic subgrid-scale model of turbulence , 1994, Journal of Fluid Mechanics.

[29]  F. Porté-Agel,et al.  A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer , 2000, Journal of Fluid Mechanics.

[30]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[31]  Hans Peter Schmid,et al.  The influence of surface texture on the effective roughness length , 1995 .

[32]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[33]  C. Shir A Numerical Computation of Air Flow over a Sudden Change of Surface Roughness , 1972 .

[34]  Ulrich Schumann,et al.  Large-eddy simulation of turbulent flow above and within a forest , 1992 .

[35]  John C. Wyngaard,et al.  Statistics of Conservative Scalars in the Convective Boundary Layer , 1984 .

[36]  Marc B. Parlange,et al.  Natural integration of scalar fluxes from complex terrain , 1999 .

[37]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[38]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[39]  Charles Meneveau,et al.  On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer , 2003 .

[40]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[41]  Steven A. Orszag,et al.  Numerical Computation of Turbulent Shear Flows , 1975 .

[42]  Branko Kosovic,et al.  Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers , 1997, Journal of Fluid Mechanics.

[43]  Maurizio Quadrio,et al.  Initial response of a turbulent channel flow to spanwise oscillation of the walls , 2003 .

[44]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[45]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[46]  Ugo Piomelli,et al.  Large-eddy simulation of rotating channel flows using a localized dynamic model , 1995 .

[47]  Marcel Lesieur,et al.  Turbulence and Coherent Structures , 1991 .

[48]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[49]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[50]  B. Geurts,et al.  On the formulation of the dynamic mixed subgrid-scale model , 1994 .

[51]  C. Meneveau,et al.  The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence , 1997 .

[52]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[53]  Vincenzo Armenio,et al.  A Lagrangian Mixed Subgrid-Scale Model in Generalized Coordinates , 2000 .

[54]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[55]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[56]  I. Marusic,et al.  On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer , 2001, Journal of Fluid Mechanics.

[57]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[58]  Javier Jiménez,et al.  Scaling of the energy spectra of turbulent channels , 2003, Journal of Fluid Mechanics.

[59]  Marc B. Parlange,et al.  Low‐wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer , 1995 .