Modulation Domain Template Tracking

For the first time, we perform normalized correlation template tracking in the modulation domain. For each frame of the video sequence, we compute a multi-component AM-FM image model that characterizes the local texture structure of objects and backgrounds. Tracking is carried out by formulating a modulation domain correlation function in the derived feature space. Using visible and longwave infrared sequences as illustrative examples, we study the performance of this new approach relative to two basic pixel domain correlation template trackers. We also present preliminary results from a new dual domain tracker that operates simultaneously in both the pixel and modulation domains.

[1]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[2]  J. Aggarwal,et al.  Detecting moving objects in airborne forward looking infra-red sequences , 1999, Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99).

[3]  Abdullah Bal,et al.  Automatic target tracking in FLIR image sequences using intensity variation function and template modeling , 2005, IEEE Transactions on Instrumentation and Measurement.

[4]  Jesmin F. Khan,et al.  Minimax distance transform correlation filter-based target detection in FLIR imagery , 2005, SPIE Optics + Photonics.

[5]  Marco Diani,et al.  Novel background removal algorithm for Navy infrared search and track systems , 2001 .

[6]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[7]  Alan C. Bovik,et al.  Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models , 2000, IEEE Trans. Image Process..

[8]  Joseph P. Havlicek,et al.  Modulation Domain Features for Discriminating Infrared Targets and Backgrounds , 2006, 2006 International Conference on Image Processing.

[9]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Alfredo Restrepo,et al.  Localized measurement of emergent image frequencies by Gabor wavelets , 1992, IEEE Trans. Inf. Theory.

[11]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Joseph P. Havlicek,et al.  AM-FM Image Models: Fundamental Techniques and Emerging Trends , 2005 .

[13]  Petros Maragos,et al.  Image demodulation using multidimensional energy separation , 1995 .

[14]  Benjamin Friedlander,et al.  A Frequency Domain Algorithm for Multiframe Detection and Estimation of Dim Targets , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Rama Chellappa,et al.  A multi-fractal formalism for stabilization, object detection and tracking in FLIR sequences , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[16]  Ioannis Pitas,et al.  4.11 – 2D and 3D Motion Tracking in Digital Video , 2005 .

[17]  Mubarak Shah,et al.  Target tracking in airborne forward looking infrared imagery , 2003, Image Vis. Comput..