Gentzen-Mints-Zucker duality

The Curry-Howard correspondence is often described as relating proofs (in intutionistic natural deduction) to programs (terms in simply-typed lambda calculus). However this narrative is hardly a perfect fit, due to the computational content of cut-elimination and the logical origins of lambda calculus. We revisit Howard's work and interpret it as an isomorphism between a category of proofs in intuitionistic sequent calculus and a category of terms in simply-typed lambda calculus. In our telling of the story the fundamental duality is not between proofs and programs but between local (sequent calculus) and global (lambda calculus or natural deduction) points of view on a common logico-computational mathematical structure.

[1]  J. Lambek Functional completeness of cartesian categories , 1974 .

[2]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[3]  Bart Jacobs,et al.  Fibrations with Indeterminates: Contextual and Functional Completeness for Polymorphic Lambda Calculi , 1995, Math. Struct. Comput. Sci..

[4]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[5]  Anne Sjerp Troelstra,et al.  Marginalia on Sequent Calculi , 1999, Stud Logica.

[6]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[7]  H. B. Curry,et al.  Combinatory Logic, Volume I. , 1961 .

[8]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[9]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[10]  S. Lane The Lambda Calculus and Adjoint Functors , 2001 .

[11]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[12]  Dag Prawitz,et al.  Philosophical aspects of proof theory , 1981 .

[13]  J. Girard,et al.  Proofs and types , 1989 .

[14]  Neil Ghani,et al.  The virtues of eta-expansion , 1995, Journal of Functional Programming.

[15]  Luís Pinto,et al.  Permutability of Proofs in Intuitionistic Sequent Calculi , 1999, Theor. Comput. Sci..

[16]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[17]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism , 2013 .

[18]  M. Atiyah DUALITY IN MATHEMATICS AND PHYSICS , 2008 .

[19]  A. M. Ungar Normalization, Cut-Elimination, and the Theory of Proofs , 1992 .

[20]  Sara Negri,et al.  Structural proof theory , 2001 .

[21]  K. Dosen Abstraction and Application in Adjunction , 2001, math/0111061.

[22]  Kosta Dosen,et al.  On permuting cut with contraction , 2000, Math. Struct. Comput. Sci..

[23]  Kosta Dosen,et al.  Deductive completeness , 1996, Bull. Symb. Log..

[24]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[25]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[26]  Garrel Pottinger,et al.  Normalization as a homomorphic image of cut-elimination , 1977 .

[27]  J. Girard The Blind Spot: Lectures on Logic , 2011 .

[28]  Stephen Cole Kleene,et al.  Two papers on the predicate calculus , 1952 .

[29]  Philip Wadler,et al.  Proofs are Programs: 19th Century Logic and 21st Century Computing , 2000 .

[30]  Sara Negri,et al.  Varieties of Linear Calculi , 2002, J. Philos. Log..

[31]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[32]  J. Zucker The correspondence between cut-elimination and normalization II , 1974 .

[33]  Peter Selinger,et al.  Lecture notes on the lambda calculus , 2008, ArXiv.

[34]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .