Functions of multiple-valued logic and the complexity of constraint satisfaction: A short survey

Many computational problems arising in artificial intelligence, computer science and elsewhere can be represented as constraint satisfaction and optimization problems. In this short survey we discuss an approach that is related to the algebraic component of multiple-valued logic and that has proved to be very successful in studying the complexity of constraint satisfaction.

[1]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[2]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[3]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[4]  Bernard A. Nadel,et al.  Constraint Satisfaction in Prolog: Complexity and Theory-Based Heuristics , 1995, Inf. Sci..

[5]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[6]  Martha Sideri,et al.  The Inverse Satisfiability Problem , 1996, SIAM J. Comput..

[7]  Marc Gyssens,et al.  How to Determine the Expressive Power of Constraints , 1999, Constraints.

[8]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[9]  Marc Gyssens,et al.  Decomposing Constraint Satisfaction Problems Using Database Techniques , 1994, Artif. Intell..

[10]  Phokion G. Kolaitis,et al.  The complexity of minimal satisfiability problems , 2001, Inf. Comput..

[11]  Peter van Beek,et al.  Reasoning About Qualitative Temporal Information , 1990, Artif. Intell..

[12]  Peter Jeavons,et al.  A Survey of Tractable Constraint Satisfaction Problems , 1997 .

[13]  Finite sublattices in the lattice of clones , 1994 .

[14]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[15]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[18]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[19]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[20]  Peter J. Stuckey,et al.  Programming with Constraints: An Introduction , 1998 .

[21]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[22]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[23]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[24]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[25]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[26]  Gianluca Rossi,et al.  On the Hamming distance of constraint satisfaction problems , 2002, Theor. Comput. Sci..

[27]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[28]  P. Jeavons Towards High Order Constraint Representations for the Frequency Assignment Problem , 1998 .

[29]  Heribert Vollmer,et al.  Equivalence and Isomorphism for Boolean Constraint Satisfaction , 2002, CSL.

[30]  R. Dechter to Constraint Satisfaction , 1991 .

[31]  Peter Jeavons,et al.  Constructing Constraints , 1998, CP.

[32]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[33]  Víctor Dalmau Lloret Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .

[34]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[35]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[36]  Nicholas Pippenger,et al.  Theories of computability , 1997 .

[37]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[38]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..