Potential application of phage therapy for prophylactic treatment against Pseudomonas aeruginosa biofilm Infections

The majority of the microbial activity in humans is in the form of biofilms, i.e., an exopolysaccharide-enclosed bacterial mass. Unlike planktonic cells and the cells on the surface of the biofilm, the biofilm-embedded cells are more resistant to the effects of the antibiotics and the host cellular defense mechanisms. A combination of biofilm growth and inherent resistance prevents effective antibiotic treatment of Pseudomonas aeruginosa infections including those in patients with cystic fibrosis. Antibiotic resistance has led to an increasing interest in alternative modalities of treatment. Thus, phages that multiply in situ and in the presence of susceptible hosts can be used as natural, self-limiting, and profoundly penetrating antibacterial agents. The objective of this study is to identify active phages against a collection of P. aeruginosa isolates (PCOR strains) including the prototype PAO1 and the isogenic constitutively alginate-producing PDO300 strains. These PCOR strains were tested against six phages (P105, P134, P140, P168, P175B, and P182). The analysis shows 69 % of the PCOR isolates are sensitive and the rest are resistant to all six phages. These phages were then tested for their ability to inhibit biofilm formation using a modified biofilm assay. The analysis demonstrated that the sensitive strains showed increased resistance, but none of the susceptible strains from the initial screening were resistant. Using the minimum biofilm eradication concentration (MBEC) assay for biofilm formation, the biofilm eradication ability of the phages was tested. The data showed that a higher volume of phage was required to eradicate preformed biofilms than the amount required to prevent colonization of planktonic cells. This data supports the idea of phage therapy more as a prophylactic treatment.

[1]  C. Huttenhower,et al.  Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences , 2019, Nature Communications.

[2]  Kevin S. Bonham,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[3]  Jennifer M. Fettweis,et al.  The Integrative Human Microbiome Project , 2019, Nature.

[4]  C. Huttenhower,et al.  Gut microbiome structure and metabolic activity in inflammatory bowel disease , 2018, Nature Microbiology.

[5]  Giri Narasimhan,et al.  Dynamic interaction network inference from longitudinal microbiome data , 2018, Microbiome.

[6]  Travis E. Gibson,et al.  Robust and Scalable Models of Microbiome Dynamics , 2018, ICML.

[7]  C. Huttenhower,et al.  Dynamics of metatranscription in the inflammatory bowel disease gut microbiome , 2018, Nature Microbiology.

[8]  Radu Marculescu,et al.  Inferring Microbial Interactions from Metagenomic Time-series Using Prior Biological Knowledge , 2017, BCB.

[9]  Scott T. Weiss,et al.  Longitudinal Prediction of the Infant Gut Microbiome with Dynamic Bayesian Networks , 2016, Scientific Reports.

[10]  Casey M. Theriot,et al.  Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation , 2016, mSystems.

[11]  Eran Elinav,et al.  Use of Metatranscriptomics in Microbiome Research , 2016, Bioinformatics and biology insights.

[12]  David J. Beale,et al.  Beyond Metabolomics: A Review of Multi-Omics-Based Approaches , 2016 .

[13]  Georg K Gerber,et al.  The dynamic microbiome , 2014, FEBS letters.

[14]  William D. Shannon,et al.  Patterned progression of bacterial populations in the premature infant gut , 2014, Proceedings of the National Academy of Sciences.

[15]  G. Donelli,et al.  Microbial Biofilms , 2014, Methods in Molecular Biology.

[16]  Gunnar Rätsch,et al.  Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota , 2013, PLoS Comput. Biol..

[17]  Samuel B. Fey,et al.  The under‐ice microbiome of seasonally frozen lakes , 2013 .

[18]  P. Poole,et al.  The plant microbiome , 2013, Genome Biology.

[19]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[20]  I. Simon,et al.  Studying and modelling dynamic biological processes using time-series gene expression data , 2012, Nature Reviews Genetics.

[21]  P. Turnbaugh,et al.  An Invitation to the Marriage of Metagenomics and Metabolomics , 2008, Cell.

[22]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[23]  S. Abbott,et al.  16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls , 2007, Journal of Clinical Microbiology.

[24]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[25]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[26]  J. Soothill,et al.  Experimental Bacteriophage Protection against Staphylococcus aureus Abscesses in a Rabbit Model , 2005, Antimicrobial Agents and Chemotherapy.

[27]  L. Eberl,et al.  Screening for Quorum-Sensing Inhibitors (QSI) by Use of a Novel Genetic System, the QSI Selector , 2005, Journal of bacteriology.

[28]  Iftekhar Bin Naser,et al.  Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. A. Zaidi,et al.  Biologically active traditional medicinal herbs from Balochistan, Pakistan. , 2005, Journal of ethnopharmacology.

[30]  N. Al-Waili,et al.  Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. , 2004, Journal of medicinal food.

[31]  J. Handelsman,et al.  Metagenomics: genomic analysis of microbial communities. , 2004, Annual review of genetics.

[32]  U. Bläsi,et al.  Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage , 2004, Antimicrobial Agents and Chemotherapy.

[33]  E. Anggard,et al.  Therapeutic use of bacteriophages. , 2004, The Lancet. Infectious diseases.

[34]  N. Al-Waili Investigating the antimicrobial activity of natural honey and its effects on the pathogenic bacterial infections of surgical wounds and conjunctiva. , 2004, Journal of medicinal food.

[35]  S. Molin,et al.  Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. , 2004, Journal of medical microbiology.

[36]  R. MacLaren,et al.  Surveillance of multi-drug resistant Pseudomonas aeruginosa in an urban tertiary-care teaching hospital. , 2004, The Journal of hospital infection.

[37]  G. French,et al.  Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995-2000. , 2004, The Journal of antimicrobial chemotherapy.

[38]  Jason R. Clark,et al.  Genetic immunisation against hepatitis B using whole bacteriophage λ particles , 2004 .

[39]  M. Ueno,et al.  [Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection]. , 2004, Revista de saude publica.

[40]  Hongwei D. Yu,et al.  Cross-Sectional Analysis of Clinical and Environmental Isolates of Pseudomonas aeruginosa: Biofilm Formation, Virulence, and Genome Diversity , 2004, Infection and Immunity.

[41]  H. Ceri,et al.  Minimum Inhibitory Concentration (MIC) versus Minimum Biofilm Eliminating Concentration (MBEC) in Evaluation of Antibiotic Sensitivity of Gram-negative Bacilli Causing Peritonitis , 2004, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[42]  Jason R. Clark,et al.  Genetic immunisation against hepatitis B using whole bacteriophage lambda particles. , 2004, Vaccine.

[43]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[44]  A. Donoghue,et al.  Bacteriophage Treatment of a Severe Escherichia coli Respiratory Infection in Broiler Chickens , 2003, Avian diseases.

[45]  A. Górski,et al.  New insights into the possible role of bacteriophages in transplantation. , 2003, Transplantation proceedings.

[46]  A. Kharazmi,et al.  Cytokine modulating effect of ginseng treatment in a mouse model of Pseudomonas aeruginosa lung infection. , 2003, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[47]  M. Mathur,et al.  Bacteriophage therapy: an alternative to conventional antibiotics. , 2003, The Journal of the Association of Physicians of India.

[48]  T. Nakai,et al.  Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. , 2003, Diseases of aquatic organisms.

[49]  W. Mabusela,et al.  An assessment of two Carpobrotus species extracts as potential antimicrobial agents. , 2003, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[50]  N. Høiby Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. , 2002, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[51]  Angelo DePaola,et al.  Phage Therapy of Local and Systemic Disease Caused by Vibrio vulnificus in Iron-Dextran-Treated Mice , 2002, Infection and Immunity.

[52]  D. Sosnowska,et al.  Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. , 2002, The Journal of infectious diseases.

[53]  A. Kharazmi,et al.  Gerimax ginseng regulates both humoral and cellular immunity during chronic Pseudomonas aeruginosa lung infection. , 2002, Journal of alternative and complementary medicine.

[54]  S. Ahmad,et al.  Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. , 2002, Medical hypotheses.

[55]  P. Moore,et al.  Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). , 2002, Poultry science.

[56]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[57]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[58]  C. Merril,et al.  Bacteriophage Therapy Rescues Mice Bacteremic from a Clinical Isolate of Vancomycin-Resistant Enterococcus faecium , 2002, Infection and Immunity.

[59]  P. Vandamme,et al.  Identification of Pandoraea Species by 16S Ribosomal DNA-Based PCR Assays , 2001, Journal of Clinical Microbiology.

[60]  S. Gorman,et al.  The concomitant development of poly(vinyl chloride)-related biofilm and antimicrobial resistance in relation to ventilator-associated pneumonia. , 2001, Biomaterials.

[61]  S. Denyer,et al.  Reduction in Exopolysaccharide Viscosity as an Aid to Bacteriophage Penetration through Pseudomonas aeruginosa Biofilms , 2001, Applied and Environmental Microbiology.

[62]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[63]  B. Tümmler,et al.  Sequence Diversity of Pseudomonas aeruginosa: Impact on Population Structure and Genome Evolution , 2000, Journal of bacteriology.

[64]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[65]  P. Youderian,et al.  Biocontrol of Escherichia coli O157 with O157-Specific Bacteriophages , 1999, Applied and Environmental Microbiology.

[66]  R. Root Clinical infectious diseases: a practical approach. , 1999 .

[67]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[68]  S. Molin,et al.  Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. , 1999, Microbiology.

[69]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[70]  J. Marks,et al.  Targeted gene delivery to mammalian cells by filamentous bacteriophage. , 1999, Journal of molecular biology.

[71]  C. Rm Phage therapy: past history and future prospects. , 1999 .

[72]  R. Carlton,et al.  Phage therapy: past history and future prospects. , 1999, Archivum immunologiae et therapiae experimentalis.

[73]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[74]  V. Deretic,et al.  Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection , 1997, Infection and immunity.

[75]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[76]  A. Prince,et al.  Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. , 1996, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[77]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[78]  B. Frederiksen,et al.  Improved survival in the Danish center‐treated cystic fibrosis patients: Results of aggressive treatment , 1996, Pediatric pulmonology.

[79]  J. Rygaard,et al.  Interferon‐gamma (IFN‐γ) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats , 1996, Clinical and experimental immunology.

[80]  J. Goldberg,et al.  Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections , 1996, Science.

[81]  Zhi-jun Song,et al.  Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection , 1996, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[82]  J. Ghuysen,et al.  Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. , 1996, Microbial drug resistance.

[83]  J. Rygaard,et al.  Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats. , 1995, American journal of respiratory and critical care medicine.

[84]  B. Tümmler,et al.  Gradient of genomic diversity in the Pseudomonas aeruginosa chromosome , 1995, Molecular microbiology.

[85]  H. Yoneyama,et al.  Expression of genes associated with antibiotic extrusion in Pseudomonas aeruginosa. , 1995, Biochemical and biophysical research communications.

[86]  J. Rygaard,et al.  Immunization with Pseudomonas aeruginosa vaccines and adjuvant can modulate the type of inflammatory response subsequent to infection , 1994, Infection and immunity.

[87]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.

[88]  S. Cryz,et al.  Clearance of Pseudomonas aeruginosa from normal rat lungs after immunization with somatic antigens or toxin A , 1994, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[89]  D. Morck,et al.  Comparative evaluation of fleroxacin, ampicillin, trimethoprimsulfamethoxazole, and gentamicin as treatments of catheter-associated urinary tract infection in a rabbit model. , 1994, International journal of antimicrobial agents.

[90]  J. Soothill Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. , 1994, Burns : journal of the International Society for Burn Injuries.

[91]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[92]  M. Dodd,et al.  Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis , 1993, The Lancet.

[93]  D. Hornick,et al.  Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway. , 1992, Seminars in respiratory infections.

[94]  K. Grimwood,et al.  Resistance to ciprofloxacin of respiratory pathogens in patients with cystic fibrosis , 1992, The Medical journal of Australia.

[95]  J. Littlewood,et al.  Acute severe deterioration in cystic fibrosis associated with influenza A virus infection. , 1992, Thorax.

[96]  N. Høiby,et al.  High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment , 1992, Antimicrobial Agents and Chemotherapy.

[97]  N. Høiby,et al.  Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. , 1992, Thorax.

[98]  J. Riordan,et al.  Cl- channel activity in Xenopus oocytes expressing the cystic fibrosis gene. , 1991, The Journal of biological chemistry.

[99]  N. Høiby,et al.  Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment , 1991, The Lancet.

[100]  W. Summers On the origins of the science in Arrowsmith: Paul de Kruif, Felix d'Herelle, and phage. , 1991, Journal of the history of medicine and allied sciences.

[101]  A. Birch‐Andersen,et al.  Morphology Of Pseudomonas aeruginosa phages from the sputum of cystic fibrosis patients and from the phage typing set , 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[102]  N. Høiby,et al.  Safety of aztreonam in patients with cystic fibrosis and allergy to beta-lactam antibiotics. , 1991, Reviews of infectious diseases.

[103]  N. Høiby,et al.  Retrospective clinical study of hypersensitivity reactions to aztreonam and six other beta-lactam antibiotics in cystic fibrosis patients receiving multiple treatment courses. , 1991, Reviews of infectious diseases.

[104]  R. Moss Drug allergy in cystic fibrosis , 1991, Clinical reviews in allergy.

[105]  J. Wine Basic aspects of cystic fibrosis , 1991, Clinical reviews in allergy.

[106]  L. Tsui,et al.  Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance , 1991, Cell.

[107]  D. Allison,et al.  Effect of growth-rate on resistance of gram-negative biofilms to cetrimide. , 1990, The Journal of antimicrobial chemotherapy.

[108]  J. Wine Basic aspects of cystic fibrosis. , 1990 .

[109]  H. Nikaido Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.

[110]  L. Tsui,et al.  Erratum: Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA , 1989, Science.

[111]  B. Hamory,et al.  Effects of acute viral respiratory tract infections in patients with cystic fibrosis , 1989, Pediatric pulmonology.

[112]  L. Tsui,et al.  Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. , 1989, Science.

[113]  N. Høiby,et al.  Comparison of amoxycillin/clavulanate with amoxycillin in children and adults with chronic obstructive pulmonary disease and infection with Haemophilus influenzae. , 1988, Scandinavian journal of infectious diseases.

[114]  N. Høiby,et al.  Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. , 1987, The Journal of antimicrobial chemotherapy.

[115]  K. M. Shaw,et al.  Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. , 1987, Journal of general microbiology.

[116]  E. Meitert,et al.  Investigation on the therapeutical efficiency of some adapted bacteriophages in experimental infection with Pseudomonas aeruginosa. , 1987, Archives roumaines de pathologie experimentales et de microbiologie.

[117]  M. Dabrowski,et al.  Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. , 1987, Archivum immunologiae et therapiae experimentalis.

[118]  N. Høiby,et al.  Combined imipenem/cilastatin and tobramycin therapy of multiresistant Pseudomonas aeruginosa in cystic fibrosis. , 1987, The Journal of antimicrobial chemotherapy.

[119]  A. Kucharewicz-Krukowska,et al.  Immunogenic effect of bacteriophage in patients subjected to phage therapy. , 1987, Archivum immunologiae et therapiae experimentalis.

[120]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[121]  A. Tomasz,et al.  Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat , 1986, Antimicrobial Agents and Chemotherapy.

[122]  N. Høiby,et al.  An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. , 1986, The Journal of antimicrobial chemotherapy.

[123]  M. R. Brown,et al.  Influence of substrate limitation and growth phase on sensitivity to antimicrobial agents. , 1985, The Journal of antimicrobial chemotherapy.

[124]  Peter J. Scambler,et al.  Localization of cystic fibrosis locus to human chromosome 7cen–q22 , 1985, Nature.

[125]  R. Moss,et al.  Allergy to semisynthetic penicillins in cystic fibrosis. , 1984, The Journal of pediatrics.

[126]  H. Smith,et al.  Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. , 1983, Journal of general microbiology.

[127]  M. Dabrowski,et al.  Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. , 1983, Archivum immunologiae et therapiae experimentalis.

[128]  M. Dabrowski,et al.  Results of bacteriophage treatment of suppurative bacterial infections. II. Detailed evaluation of the results. , 1983, Archivum immunologiae et therapiae experimentalis.

[129]  N. HØiby,et al.  ANTIBIOTIC TREATMENT OF STAPHYLOCOCCUS AUREUS INFECTION IN CYSTIC FIBROSIS , 1982, Acta paediatrica Scandinavica.

[130]  H. Smith,et al.  Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. , 1982, Journal of general microbiology.

[131]  D. Caron,et al.  Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant , 1982, Antimicrobial Agents and Chemotherapy.

[132]  N. Høiby,et al.  RESPIRATORY INFECTIONS IN CYSTIC FIBROSIS PATIENTS CAUSED BY VIRUS, CHLAMYDIA AND MYCOPLASMA–POSSIBLE SYNERGISM WITH PSEUDOMONAS AERUGINOSA , 1981, Acta paediatrica Scandinavica.

[133]  A. J. Godfrey,et al.  beta-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment , 1981, Antimicrobial Agents and Chemotherapy.

[134]  J. Costerton,et al.  Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis , 1980, Infection and immunity.

[135]  R. Baltimore,et al.  Immunologic investigations of mucoid strains of Pseudomonas aeruginosa: comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. , 1980, The Journal of infectious diseases.

[136]  N. Høiby Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. , 1977, Acta pathologica et microbiologica Scandinavica. Supplement.

[137]  A. Linker,et al.  Production and Characterization of the Slime Polysaccharide of Pseudomonas aeruginosa , 1973, Journal of bacteriology.

[138]  Peitzman Sj Felix d'Herelle and bacteriophage therapy. , 1969 .

[139]  H. Boyer,et al.  A complementation analysis of the restriction and modification of DNA in Escherichia coli. , 1969, Journal of molecular biology.

[140]  S. Peitzman Felix d'Herelle and bacteriophage therapy. , 1969, Transactions & studies of the College of Physicians of Philadelphia.

[141]  G. Harrison,et al.  An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas , 1966 .

[142]  M. Ciucă,et al.  [RESEARCH ON SOME GENETIC ASPECTS OF THE BIOLOGICAL EVOLUTION OF "LYTIC" AND "LYSOGENIC" ENTERIC BACTERIOPHAGES]. , 1963, Studii si cercetari de inframicrobiologie.

[143]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.

[144]  G. Bertani Lysogenic versus lytic cycle of phage multiplication. , 1953, Cold Spring Harbor symposia on quantitative biology.

[145]  C. E. Snelling,et al.  Cystic fibrosis of the pancreas* , 1942, Archives of Disease in Childhood.

[146]  C. May,et al.  Inspissation of secretion, dilatation of the ducts and acini, atrophy and fibrosis of the pancreas in infants , 1938 .