Modeling biased information seeking with second order probability distributions

[1]  Gernot D. Kleiter,et al.  Exchangeability in Probability Logic , 2012, IPMU.

[2]  Gernot D. Kleiter,et al.  Propagating Imprecise Probabilities in Bayesian Networks , 1996, Artif. Intell..

[3]  Ryan D. Tweney,et al.  The pseudodiagnosticity trap: Should participants consider alternative hypotheses? , 2010 .

[4]  Larry Wasserman,et al.  Prior Envelopes Based on Belief Functions , 1990 .

[5]  H. Joe Dependence Modeling with Copulas , 2014 .

[6]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[7]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[8]  Gernot D. Kleiter,et al.  Degradation in probability logic: when more information leads to less precise conclusions , 2014, Kybernetika.

[9]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[10]  R. Nelsen An Introduction to Copulas , 1998 .

[11]  R. Scozzafava,et al.  Probabilistic Logic in a Coherent Setting , 2002 .

[12]  Angelo Gilio,et al.  Generalizing inference rules in a coherence-based probabilistic default reasoning , 2012, Int. J. Approx. Reason..

[13]  M E Doherty,et al.  'Pseudodiagnosticity' in an idealized medical problem-solving environment. , 1982, Journal of medical education.

[14]  Gernot D. Kleiter Ockham's Razor in Probability Logic , 2012, SMPS.

[15]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[16]  A. M. Hanea,et al.  Non-Parametric Bayesian Belief Nets versus Vines , 2010 .

[17]  Larry Wasserman,et al.  Dilation for Sets of Probabilities , 1993 .

[18]  Giulianella Coletti,et al.  Bayesian inference: the role of coherence to deal with a prior belief function , 2014, Stat. Methods Appl..

[19]  Eike Christian Brechmann,et al.  Statistical Inference of Vine Copulas using the R-Package VineCopula , 2013 .

[20]  Gernot D. Kleiter,et al.  Probability Propagation in Generalized Inference Forms , 2014, Stud Logica.