The optimal path-matching problem

We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we present results implying the polynomial-time solvability of the two problems. We also use our results to give the first strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and the first polynomial-time algorithm to compute the rank of a certain matrix of indeterminates. Our algorithmic results are based on polyhedral characterizations, and on the equivalence of separation and optimization.