Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.