Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys

[1]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[2]  E A Disbrow,et al.  Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Ahnn,et al.  Analysis of the , 2000 .

[4]  Y Miyashita,et al.  Mapping of somatosensory cortices with functional magnetic resonance imaging in anaesthetized macaque monkeys , 1999, The European journal of neuroscience.

[5]  M. Goldberg,et al.  Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task , 1999, Nature Neuroscience.

[6]  J. Mandeville,et al.  Vascular filters of functional MRI: Spatial localization using BOLD and CBV contrast , 1999, Magnetic resonance in medicine.

[7]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[8]  B. Rosen,et al.  Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[10]  K Fukushima,et al.  Vestibular‐Pursuit Interactions: Gaze‐Velocity and Target‐Velocity Signals in the Monkey Frontal Eye Fields , 1999, Annals of the New York Academy of Sciences.

[11]  A. D. de Crespigny,et al.  High-Resolution Functional Magnetic Resonance Imaging of the Rat Brain: Mapping Changes in Cerebral Blood Volume Using Iron Oxide Contrast Media , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  E. Hildreth,et al.  Motion perception , 1998 .

[13]  R A Andersen,et al.  Functional magnetic resonance imaging in macaque cortex , 1998, Neuroreport.

[14]  T. Albright,et al.  fMRI of Monkey Visual Cortex , 1998, Neuron.

[15]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[16]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[17]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[18]  G. Orban,et al.  Functional magnetic resonance imaging in an awake rhesus monkey , 1998 .

[19]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[20]  R. Andersen,et al.  Neural Mechanisms of Visual Motion Perception in Primates , 1997, Neuron.

[21]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[22]  C. Bruce,et al.  Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. , 1997, Journal of neurophysiology.

[23]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[24]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[25]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[27]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  A Berthoz,et al.  Functional Neuroanatomy of the Human Visual Fixation System , 1995, The European journal of neuroscience.

[30]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[31]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[32]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[33]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[34]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[35]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[36]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[37]  R. Weissleder,et al.  MION-ASF: biokinetics of an MR receptor agent. , 1993, Magnetic resonance imaging.

[38]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[39]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[41]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[42]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[43]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  H. Bengele,et al.  A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. , 1990, Magnetic resonance imaging.

[46]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurons in visual cortical area V3A of the macaque monkey , 1988, Vision Research.

[47]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[48]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[49]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[50]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[51]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[52]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[53]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[55]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[56]  Leslie G. Ungerleider,et al.  Subcortical projections of area MT in the macaque , 1984, The Journal of comparative neurology.

[57]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  L. Benevento,et al.  The organization of connections between the pulvinar and visual area MT in the macaque monkey , 1983, Brain Research.

[59]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[60]  E. Ross The Organization of Will , 1916, American Journal of Sociology.