Modular Invariants, Graphs and α-Induction¶for Nets of Subfactors I

[1]  David E. Evans,et al.  Modular Invariants, Graphs and α-Induction for Nets of Subfactors. II , 1998, hep-th/9805023.

[2]  Fengjun Xu New Braided Endomorphisms from Conformal Inclusions , 1997, q-alg/9708011.

[3]  David E. Evans,et al.  Quantum symmetries on operator algebras , 1998 .

[4]  J. Zuber,et al.  From CFT to graphs , 1995, hep-th/9510175.

[5]  K.-H.Rehren,et al.  Nets of Subfactors , 1994, hep-th/9411077.

[6]  Roberto Longo,et al.  A duality for Hopf algebras and for subfactors. I , 1994 .

[7]  P. Francesco INTEGRABLE LATTICE MODELS, GRAPHS AND MODULAR INVARIANT CONFORMAL FIELD THEORIES , 1992 .

[8]  R. Haag,et al.  Local quantum physics , 1992 .

[9]  J. Zuber,et al.  SU($N$) Lattice Integrable Models Associated With Graphs , 1990 .

[10]  Roberto Longo,et al.  Index of subfactors and statistics of quantum fields. I , 1989 .

[11]  Bert Schroer,et al.  Superselection sectors with braid group statistics and exchange algebras , 1989 .

[12]  D. Buchholz,et al.  The Current Algebra on the Circle as a Germ of Local Field Theories , 1988 .

[13]  C. Itzykson,et al.  The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .

[14]  H. Kosaki Extension of Jones' theory on index to arbitrary factors , 1986 .

[15]  Rudolf Haag,et al.  Local observables and particle statistics II , 1971 .

[16]  John E. Roberts,et al.  Local observables and particle statistics I , 1971 .

[17]  John E. Roberts,et al.  Fields, observables and gauge transformations II , 1969 .

[18]  Rudolf Haag,et al.  Fields, observables and gauge transformations I , 1969 .