Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion

We consider the chemotaxis–haptotaxis model {ut=∇⋅(D(u)∇u)−χ∇⋅(u∇v)−ξ∇⋅(u∇w)+μu(1−u−w),x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0,wt=−vw,x∈Ω,t>0 in a bounded smooth domain Ω⊂Rn (n≥2), where χ, ξ and μ are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u)=δ(u+1)−α with α∈R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u0,v0,w0) and α<2n−1, the corresponding initial–boundary problem possesses a unique global-in-time classical solution which is uniformly bounded. This paper develops some Lp-estimate techniques and thereby extends boundedness results in n≤3 to arbitrary space dimensions.

[1]  Cristian Morales-Rodrigo,et al.  Asymptotic behaviour of global solutions to a model of cell invasion , 2009, 0907.0885.

[2]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[3]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[4]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[5]  Christoph Walker,et al.  Global Existence of Classical Solutions for a Haptotaxis Model , 2007, SIAM J. Math. Anal..

[6]  Y. Tao,et al.  Boundedness and stabilization in a multi-dimensional chemotaxis—haptotaxis model , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Tomasz Cieślak Quasilinear nonuniformly parabolic system modelling chemotaxis , 2007 .

[8]  Youshan Tao Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source , 2009 .

[9]  Mariya Ptashnyk,et al.  BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL , 2010 .

[10]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[11]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[12]  N. Mizoguchi,et al.  Nondegeneracy of blow-up points for the parabolic Keller–Segel system , 2014 .

[13]  Xinru Cao,et al.  Boundedness in a three-dimensional chemotaxis–haptotaxis model , 2015, Zeitschrift für angewandte Mathematik und Physik.

[14]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[15]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[16]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[17]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[18]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[19]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[20]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[21]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source , 2013 .

[22]  Mingjun Wang,et al.  A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source , 2009, SIAM J. Math. Anal..

[23]  Michael Winkler,et al.  A Chemotaxis-Haptotaxis Model: The Roles of Nonlinear Diffusion and Logistic Source , 2011, SIAM J. Math. Anal..

[24]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[25]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[26]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[27]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[28]  Youshan Tao Boundedness in a two-dimensional chemotaxis-haptotaxis system , 2014, 1407.7382.

[29]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity , 2006, Networks Heterog. Media.

[30]  M. Winkler,et al.  Dominance of chemotaxis in a chemotaxis–haptotaxis model , 2014 .

[31]  Youshan Tao,et al.  Global solution for a chemotactic–haptotactic model of cancer invasion , 2008 .