Approximate homotopy symmetry method: Homotopy series solutions to the sixth-order Boussinesq equation

An approximate homotopy symmetry method for nonlinear problems is proposed and applied to the sixth-order Boussinesq equation, which arises from fluid dynamics. We summarize the general formulas for similarity reduction solutions and similarity reduction equations of different orders, educing the related homotopy series solutions. Zero-order similarity reduction equations are equivalent to the Painlevé IV type equation or Weierstrass elliptic equation. Higher order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations. The auxiliary parameter has an effect on the convergence of homotopy series solutions. Series solutions and similarity reduction equations from the approximate symmetry method can be retrieved from the approximate homotopy symmetry method.

[1]  Prabir Daripa,et al.  Higher-order Boussinesq equations for two-way propagation of shallow water waves , 2006 .

[2]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[3]  Shijun Liao,et al.  On the homotopy analysis method for nonlinear problems , 2004, Appl. Math. Comput..

[4]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[5]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[6]  S. Liao AN EXPLICIT TOTALLY ANALYTIC APPROXIMATION OF BLASIUS VISCOUS FLOW PROBLEMS , 1999 .

[7]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[8]  Shijun Liao,et al.  Analytic solutions of the temperature distribution in Blasius viscous flow problems , 2002, Journal of Fluid Mechanics.

[9]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[10]  Liao Shijun BEYOND PERTURBATION:THE BASIC CONCEPTS OF THE HOMOTOPY ANALYSIS METHOD AND ITS APPLICATIONS , 2008 .

[11]  S. Lou,et al.  Symmetry analysis and exact solutions of the 2+1 dimensional sine-Gordon system , 2000 .

[12]  S. Liao An explicit, totally analytic approximate solution for Blasius’ viscous flow problems , 1999 .

[13]  Nail H. Ibragimov Approximate transformation groups , 2008 .

[14]  Vimal Singh,et al.  Perturbation methods , 1991 .

[15]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[16]  W. I. Fushchich,et al.  On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter , 1989 .

[17]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[18]  Wei Hua,et al.  A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques , 1999, Appl. Math. Comput..

[19]  S. Lie,et al.  Vorlesungen über Differentialgleichungen, mit bekannten infinitesimalen Transformationen , 1891 .

[20]  R. Wiltshire,et al.  Two approaches to the calculation of approximate symmetry exemplified using a system of advection-diffusion equations , 2006 .

[21]  M. Pakdemirli,et al.  Comparison of Approximate Symmetry Methods for Differential Equations , 2004 .

[22]  S. Liao,et al.  A Simple Approach of Enlarging Convergence Regions of Perturbation Approximations , 1999 .

[23]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[24]  J. Stuart Perturbation methods in fluid mechanics: M. Van Dyke. The Parabolic Press, Stanford, CA (1975). Price $7.00 , 1977 .

[25]  Ruoxia Yao,et al.  Approximate similarity reduction for singularly perturbed Boussinesq equation via symmetry perturbation and direct method , 2008 .