Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion

The incremental problem for quasistatic elastoplastic analysis with the von Mises yield criterion is discussed within the framework of the second-order cone programming (SOCP). We show that the associated flow rule under the von Mises yield criterion with the linear isotropic/kinematic hardening is equivalently rewritten as a second-order cone complementarity problem. The minimization problems of the potential energy and the complementary energy for incremental analysis are then formulated as the primal-dual pair of SOCP problems, which can be solved with a primal-dual interior-point method. To enhance numerical performance of tracing an equilibrium path, we propose a warm-start strategy for a primal-dual interior-point method based on the primal-dual penalty method. In this warm-start strategy, we solve a penalized SOCP problem to find the equilibrium solution at the current loading step. An advanced initial point for solving this penalized SOCP problem is defined by using information of the solution at the previous loading step.

[1]  Scott W. Sloan,et al.  Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming , 2007 .

[2]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[3]  G. Ventura,et al.  Numerical analysis of Augmented Lagrangian algorithms in complementary elastoplasticity , 2004 .

[4]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[5]  Yoshihiro Kanno,et al.  Three‐dimensional quasi‐static frictional contact by using second‐order cone linear complementarity problem , 2006 .

[6]  P. Wriggers,et al.  An interior‐point algorithm for elastoplasticity , 2007 .

[7]  Masao Fukushima,et al.  A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..

[8]  C. D. Bisbos,et al.  Second-Order Cone and Semidefinite Representations of Material Failure Criteria , 2007 .

[9]  G. Maier A quadratic programming approach for certain classes of non linear structural problems , 1968 .

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Hui Zhang,et al.  Some advances and applications in quadratic programming method for numerical modeling of elastoplastic contact problems , 2006 .

[12]  S. Caddemi,et al.  Convergence of the Newton‐Raphson algorithm in elastic‐plastic incremental analysis , 1991 .

[13]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[14]  Giulio Maier Complementary plastic work theorems in piecewise-linear elastoplasticity , 1969 .

[15]  Antonio Huerta,et al.  Consistent tangent matrices for substepping schemes , 2001 .

[16]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[17]  P. S. Theocaris,et al.  Elastic-plastic analysis of perforated thin strips of a strain-hardening material , 1964 .

[18]  Radim Blaheta,et al.  Convergence of Newton-type methods in incremental return mapping analysis of elasto-plastic problems , 1997 .

[19]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[20]  Yu Xia,et al.  A Newton’s method for perturbed second-order cone programs , 2007, Comput. Optim. Appl..

[21]  Yoshihiro Kanno,et al.  Nonsmooth Mechanics and Convex Optimization , 2011 .

[22]  Peter R. Jones,et al.  Implementation and Evaluation , 1995 .

[23]  Ai Kah Soh,et al.  Non-smooth Nonlinear Equations Methods for Solving 3D Elastoplastic Frictional Contact Problems , 2007 .

[24]  Peter Wriggers,et al.  A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law , 2004 .

[25]  David F. Shanno,et al.  Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts , 2008, Comput. Optim. Appl..

[26]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method , 2009 .

[27]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[28]  Changming Zhu A finite element–mathematical programming method for elastoplastic contact problems with friction , 1995 .

[29]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[30]  D. V. Griffiths,et al.  Observations on Return Mapping Algorithms for Piecewise Linear Yield Criteria , 2008 .

[31]  Francis Tin-Loi,et al.  Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem , 2001 .

[32]  Jacek Gondzio,et al.  Warm start of the primal-dual method applied in the cutting-plane scheme , 1998, Math. Program..

[33]  David F. Shanno,et al.  An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming , 2007, Comput. Optim. Appl..

[34]  N. Bićanić,et al.  Computational aspects of a softening plasticity model for plain concrete , 1996 .

[35]  Anders Forsgren,et al.  On Warm Starts for Interior Methods , 2005, System Modelling and Optimization.

[36]  Giulio Maier,et al.  Incremental elastoplastic analysis and quadratic optimization , 1970 .

[37]  J. Pang,et al.  Elastoplastic analysis of structures with nonlinear hardening: A nonlinear complementarity approach , 1993 .

[38]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[39]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[40]  John E. Mitchell,et al.  Restarting after Branching in the SDP Approach to MAX-CUT and Similar Combinatorial Optimization Problems , 2001, J. Comb. Optim..

[41]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[42]  K. M. Liew,et al.  Elasto‐plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming , 2002 .

[43]  Robert L. Taylor,et al.  Complementary mixed finite element formulations for elastoplasticity , 1989 .

[44]  Mohammed Hjiaj,et al.  A complete stress update algorithm for the non-associated Drucker–Prager model including treatment of the apex , 2003 .

[45]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..

[46]  L. Contrafatto,et al.  Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation , 2000 .

[47]  F. Kozin,et al.  System Modeling and Optimization , 1982 .

[48]  Zhong Wan-xie,et al.  A finite element method for elasto-plastic structures and contact problems by parametric quadratic programming , 1988 .

[49]  J. C. Simo,et al.  A return mapping algorithm for plane stress elastoplasticity , 1986 .

[50]  E. Alper Yildirim,et al.  Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension , 2008, Comput. Optim. Appl..

[51]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[52]  Xuxin Tu,et al.  Return mapping for nonsmooth and multiscale elastoplasticity , 2009 .

[53]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[54]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[55]  Makoto Ohsaki,et al.  A non-interior implicit smoothing approach to complementarity problems for frictionless contacts , 2011 .