Investigation of microbubble detection methods for super-resolution imaging of microvasculature

Super-resolution ultrasound has potential for visualisation of microvasculature1. Techniques that localise isolated bubble signals first require detection algorithms to separate the bubble and tissue response. Resolution of the tortuous microvasculature requires localisations with accuracy on the micron scale. Tumour microvasculature blood velocities are <1mm/s, and even for vessel diameters approaching 60μm can be an order of magnitude less than normal vasculature2. This work compares pulse inversion1 (PI), differential imaging3 (DI) and singular value decomposition4 (SVD) filtering in terms of the localisation accuracy, localisation precision and contrast to tissue ratio (CTR).

[1]  M. Fink,et al.  Microbubble ultrasound super-localization imaging (MUSLI) , 2011, 2011 IEEE International Ultrasonics Symposium.

[2]  T. D. Mast,et al.  A k-space method for coupled first-order acoustic propagation equations. , 2002, The Journal of the Acoustical Society of America.

[3]  A. Bouakaz,et al.  The resonance frequency of SonoVue-TM as observed by high-speed optical imaging , 2004 .

[4]  T. Porter,et al.  Myocardial perfusion imaging with contrast ultrasound. , 2010, JACC. Cardiovascular imaging.

[5]  P. Phillips,et al.  Contrast pulse sequences (CPS): imaging nonlinear microbubbles , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[6]  Charlie Demené,et al.  Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity , 2015, IEEE Transactions on Medical Imaging.

[7]  Haim Azhari,et al.  Basics of Biomedical Ultrasound for Engineers: Azhari/Ultrasound , 2010 .

[8]  Armando Manduca,et al.  Ultrasound Small Vessel Imaging With Block-Wise Adaptive Local Clutter Filtering , 2017, IEEE Transactions on Medical Imaging.

[9]  Kenneth R. Hess,et al.  Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? , 2010, Journal of Neuro-Oncology.

[10]  Frédéric Wintzenrieth,et al.  Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images , 2017, Physics in medicine and biology.

[11]  Mickael Tanter,et al.  Resolution limits of ultrafast ultrasound localization microscopy , 2015, Physics in medicine and biology.

[12]  C. Dunsby,et al.  3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[13]  H. Azhari Basics of Biomedical Ultrasound for Engineers , 2010 .

[14]  Mickael Tanter,et al.  Sono-activated ultrasound localization microscopy , 2013 .

[15]  Paul A Dayton,et al.  Quantification of Microvascular Tortuosity during Tumor Evolution Using Acoustic Angiography. , 2015, Ultrasound in medicine & biology.

[16]  M. Fink,et al.  Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  G. Haar The Acoustic Bubble , 1996 .

[18]  Fabian Kiessling,et al.  Determination of adequate measurement times for super-resolution characterization of tumor vascularization , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[19]  J. Gorce,et al.  Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents: A Study of SonoVue™ , 2000, Investigative radiology.

[20]  H. Augustin,et al.  Mechanisms of Vessel Pruning and Regression. , 2015, Developmental cell.

[21]  Nico de Jong,et al.  Microbubble spectroscopy of ultrasound contrast agents. , 2006, The Journal of the Acoustical Society of America.

[22]  Alistair P. Rendell,et al.  Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. , 2012, The Journal of the Acoustical Society of America.

[23]  P. Choyke,et al.  Imaging of angiogenesis: from microscope to clinic , 2003, Nature Medicine.

[24]  Mickael Tanter,et al.  Subwavelength motion-correction for ultrafast Ultrasound Localization Microscopy , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[25]  P. Rafter,et al.  Means for increasing sensitivity in non-linear ultrasound imaging systems , 1997 .

[26]  P. Dayton,et al.  Optimization of Contrast-to-Tissue Ratio Through Pulse Windowing in Dual-Frequency "Acoustic Angiography" Imaging. , 2015, Ultrasound in medicine & biology.

[27]  F. Stuart Foster,et al.  Denoising of Contrast-Enhanced Ultrasound Cine Sequences Based on a Multiplicative Model , 2015, IEEE Transactions on Biomedical Engineering.

[28]  A Bouakaz,et al.  Review of shell models for contrast agent microbubbles , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  F Forsberg,et al.  Ultrasonic characterization of the nonlinear properties of contrast microbubbles. , 2000, Ultrasound in medicine & biology.

[30]  R K Jain,et al.  Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. , 1994, Cancer research.

[31]  F. Stuart Foster,et al.  Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture , 2013, Int. J. Biomed. Imaging.

[32]  Paul A. Dayton,et al.  Super resolution contrast ultrasound imaging: Analysis of imaging resolution and application to imaging tumor angiogenesis , 2016, 2016 IEEE International Ultrasonics Symposium (IUS).

[33]  Paul Aljabar,et al.  Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[34]  John A. Hossack,et al.  The Singular Value Filter: A General Filter Design Strategy for PCA-Based Signal Separation in Medical Ultrasound Imaging , 2011, IEEE Transactions on Medical Imaging.

[35]  David Cosgrove,et al.  Ultrasound contrast agents: an overview. , 2006, European journal of radiology.

[36]  Paul C. Beard,et al.  Experimental validation of photoacoustic k-Space propagation models , 2004, SPIE BiOS.

[37]  Meng-Xing Tang,et al.  Effects of nonlinear propagation in ultrasound contrast agent imaging. , 2010, Ultrasound in medicine & biology.

[38]  Peter N. Burns,et al.  Ultrasound for the Visualization and Quantification of Tumor Microcirculation , 2004, Cancer and Metastasis Reviews.

[39]  C Dunsby,et al.  Acoustic super-resolution with ultrasound and microbubbles , 2013, Physics in medicine and biology.

[40]  R. Eckersley,et al.  Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. , 2005, Ultrasound in medicine & biology.

[41]  Alessandro Ramalli,et al.  Multi-channel Raw-Data Acquisition for Ultrasound Research , 2014, 2014 17th Euromicro Conference on Digital System Design.

[42]  Detlef Lohse,et al.  A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture , 2005 .

[43]  Meng-Xing Tang,et al.  Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  D O Cosgrove,et al.  Microbubble contrast agents: a new era in ultrasound , 2001, BMJ : British Medical Journal.

[45]  Meaghan A. O'Reilly,et al.  A super-resolution ultrasound method for brain vascular mapping. , 2013, Medical physics.

[46]  Juan Tu,et al.  Estimating the shell parameters of SonoVue microbubbles using light scattering. , 2009, The Journal of the Acoustical Society of America.

[47]  Mathias Fink,et al.  Imaging of complex media with acoustic and seismic waves , 2002 .

[48]  N. de Jong,et al.  20 years of ultrasound contrast agent modeling , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[49]  Robert J. Eckersley,et al.  In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Medical Imaging.

[50]  F. Stuart Foster,et al.  The implementation of acoustic angiography for microvascular and angiogenesis imaging , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[51]  Paul A. Dayton,et al.  3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound , 2017, Theranostics.

[52]  Yonina C. Eldar,et al.  SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[53]  M. Tanter,et al.  Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging , 2015, Nature.

[54]  G. Schmitz,et al.  Imaging tumor vascularity by tracing single microbubbles , 2011, 2011 IEEE International Ultrasonics Symposium.

[55]  Yonina C. Eldar,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[56]  C. Chin,et al.  Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[57]  D. A. Christopher,et al.  High frequency color flow imaging of the microcirculation , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[58]  Sevan Harput,et al.  Two-Stage Motion Correction for Super-Resolution Ultrasound Imaging in Human Lower Limb , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[59]  Charlie Demené,et al.  Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors , 2018, IEEE Transactions on Medical Imaging.

[60]  Dai Fukumura,et al.  Tumor Microvasculature and Microenvironment: Novel Insights Through Intravital Imaging in Pre‐Clinical Models , 2010, Microcirculation.

[61]  G.E. Trahey,et al.  A motion-based approach to abdominal clutter reduction , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[62]  Armando Manduca,et al.  Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[63]  Nico de Jong,et al.  "Compression-only" behavior: a second-order nonlinear response of ultrasound contrast agent microbubbles. , 2011, The Journal of the Acoustical Society of America.