Vector‐valued optimal Lipschitz extensions
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] M. D. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .
[3] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[4] J. Wells,et al. Embeddings and Extensions in Analysis , 1975 .
[5] P. Lions,et al. Viscosity solutions of Hamilton-Jacobi equations , 1983 .
[6] B. M. Fulk. MATH , 1992 .
[7] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[8] J. Propp,et al. Combinatorial Games under Auction Play , 1999 .
[9] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[10] L. Evans,et al. Optimal Lipschitz extensions and the infinity laplacian , 2001 .
[11] Petri Juutinen,et al. ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .
[12] Y. Peres,et al. Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.
[13] O. Savin. C1 Regularity for Infinity Harmonic Functions in Two Dimensions , 2005 .
[14] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[15] Y. Peres,et al. Tug-of-war and the infinity Laplacian , 2006, math/0605002.
[16] Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces , 2006 .
[17] Champion,et al. Principles of comparison with distance functions for absolute minimizers , 2007 .
[18] Ye-Lin Ou,et al. Infinity-harmonic maps and morphisms , 2008, 0810.0975.
[19] Charles K. Smart,et al. A finite difference approach to the infinity Laplace equation and tug-of-war games , 2009, 0906.2871.
[20] Ye-Lin Ou,et al. Classifications of some special infinity-harmonic maps , 2009 .
[21] A. Naor,et al. Absolutely minimal Lipschitz extension of tree-valued mappings , 2010, 1005.2535.