Vector‐valued optimal Lipschitz extensions

Consider a bounded open set $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}U \subset \R^n$ and a Lipschitz function $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}g: \partial U \to \R^m$. Does this function always have a canonical optimal Lipschitz extension to all of U? We propose a notion of optimal Lipschitz extension and address existence and uniqueness in some special cases. In the case n = m = 2, we show that smooth solutions have two phases: in one they are conformal and in the other they are variants of infinity harmonic functions called infinity harmonic fans. We also prove existence and uniqueness for the extension problem on finite graphs. © 2011 Wiley Periodicals, Inc.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  M. D. Kirszbraun Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .

[3]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[4]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[5]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[6]  B. M. Fulk MATH , 1992 .

[7]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[8]  J. Propp,et al.  Combinatorial Games under Auction Play , 1999 .

[9]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[10]  L. Evans,et al.  Optimal Lipschitz extensions and the infinity laplacian , 2001 .

[11]  Petri Juutinen,et al.  ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .

[12]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[13]  O. Savin C1 Regularity for Infinity Harmonic Functions in Two Dimensions , 2005 .

[14]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[15]  Y. Peres,et al.  Tug-of-war and the infinity Laplacian , 2006, math/0605002.

[16]  Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces , 2006 .

[17]  Champion,et al.  Principles of comparison with distance functions for absolute minimizers , 2007 .

[18]  Ye-Lin Ou,et al.  Infinity-harmonic maps and morphisms , 2008, 0810.0975.

[19]  Charles K. Smart,et al.  A finite difference approach to the infinity Laplace equation and tug-of-war games , 2009, 0906.2871.

[20]  Ye-Lin Ou,et al.  Classifications of some special infinity-harmonic maps , 2009 .

[21]  A. Naor,et al.  Absolutely minimal Lipschitz extension of tree-valued mappings , 2010, 1005.2535.