Effect of loading history in necking and fracture

The effect of Lode angle parameter, or the third deviatoric stress invariant, on plasticity and fracture is studied using flat-grooved transverse plane strain specimens. A generalized asymmetric plasticity model for isotropic materials with both pressure and Lode angle dependence is developed. Calibration method of the plasticity model is discussed in detail. Test results on 2024-T351 aluminum alloy confirmed the proposed plasticity model. Similarly, a generalized asymmetric 3D empirical fracture locus with six free parameters is proposed. The proposed fracture locus, which depends on both stress triaxiality (or pressure) and the Lode angle parameter, is calibrated using two types of methods: classical specimens under uniaxial testing, and the newly designed butterfly specimens under biaxial testing. Experimental results on 2024-T351 aluminum alloy, 1045 steel, and A710 steel validated the proposed 3D fracture locus. A concept of forming severity is introduced to study the loading history effect on metal forming limit diagram (FLD). Given the necking locus under proportional loading conditions, and using a non-linear accumulation rule of forming severity index, the proposed model well predicts the FLDs under different pre-loading conditions. As an extension of the ductile fracture locus defined and calibrated under proportional loading conditions, a new damage accumulation rule considering the loading history effect is proposed. The new model uses the accumulated difference between directions of the back stress tensor and the current stress tensor to describe the non-proportionality of a load path. Several types of tests with complex loading histories were designed and performed to study the loading history effect on ductile fracture. Extensive experimental studies on 1045 steel confirmed the proposed ductile fracture model. The proposed model is successfully applied to predict fracture of crushed prismatic tubes undergoing strain reversal. Thesis Supervisor: Tomasz Wierzbicki Title: Professor of Applied Mechanics

[1]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear—Micromechanics , 2007 .

[2]  P. F. Thomason Tensile plastic instability and ductile fracture criteria in uniaxial compression tests , 1969 .

[3]  W. Chen,et al.  A nonuniform hardening plasticity model for concrete materials , 1985 .

[4]  D. P. Clausing,et al.  Effect of plastic strain state on ductility and toughness , 1970 .

[5]  Dirk Mohr,et al.  Calibration of Stress-triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental–Numerical Method , 2007 .

[6]  L. Xue Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading , 2007 .

[7]  Wei Hua Tai,et al.  Plastic damage and ductile fracture in mild steels , 1990 .

[8]  Gorton M. Goodwin,et al.  Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop , 1968 .

[9]  Yingbin Bao,et al.  Prediction of ductile crack formation in uncracked bodies , 2003 .

[10]  G. R. Johnson,et al.  Large Strain, High Strain Rate Testing of Copper , 1980 .

[11]  Z. Marciniak,et al.  Limit strains in the processes of stretch-forming sheet metal , 1967 .

[12]  Jean-Pierre Bardet,et al.  Lode Dependences for Isotropic Pressure-Sensitive Elastoplastic Materials , 1990 .

[13]  Toshihiro Araki,et al.  Prediction of Ductile Metal Rupture with the E-W Model in PAM-CRASH , 2003 .

[14]  A. Gurson Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction , 1988 .

[15]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[16]  Liang Xue,et al.  Ductile fracture modeling : theory, experimental investigation and numerical verification , 2007 .

[17]  A. H. van den Boogaard,et al.  A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states , 2006 .

[18]  O. Richmond,et al.  The influence of hydrostatic pressure on the flow stress and ductility of a spherodized 1045 steel , 1983 .

[19]  A. P. Karafillis,et al.  Prediction of localized thinning in sheet metal using a general anisotropic yield criterion , 2000 .

[20]  A. C. Mackenzie,et al.  On the influence of state of stress on ductile failure initiation in high strength steels , 1977 .

[21]  T. Wierzbicki,et al.  Fracture of prismatic aluminum tubes under reverse straining , 2006 .

[22]  Shear Fracture in Advanced High Strength Steels , 2006 .

[23]  Jian Zhao,et al.  Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock , 2000 .

[24]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[25]  Tomasz Wierzbicki,et al.  A Comparative Study on Various Ductile Crack Formation Criteria , 2004 .

[26]  Akhtar S. Khan,et al.  On the evolution of isotropic and kinematic hardening with finite plastic deformation Part I: compression/tension loading of OFHC copper cylinders , 1999 .

[27]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[28]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[29]  F. Barlat,et al.  Yielding description for solution strengthened aluminum alloys , 1997 .

[30]  J. Hancock,et al.  On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states , 1976 .

[31]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[32]  T. Wierzbicki,et al.  A new model of metal plasticity and fracture with pressure and Lode dependence , 2008 .

[33]  T. Wierzbicki,et al.  On fracture locus in the equivalent strain and stress triaxiality space , 2004 .

[34]  Dirk Mohr,et al.  Experimental investigation and constitutive modeling of metallic honeycombs in sandwich structures , 2003 .

[35]  Ke-Shi Zhang,et al.  Numerical analysis of the influence of the Lode parameter on void growth , 2001 .

[36]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[37]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[38]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[39]  William F. Hosford,et al.  The influence of strain-path changes on forming limit diagrams of A1 6111 T4 , 1994 .

[40]  Jinkook Kim,et al.  Modeling of Ductile Fracture: Significance of Void Coalescence , 2006 .

[41]  J. Chaboche,et al.  Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals , 1977 .

[42]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[43]  M. H. Fatt,et al.  Asymptotic and quadratic failure criteria for anisotropic materials , 1989 .

[44]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[45]  Rebecca M. Brannon,et al.  The Sandia GeoModel : theory and user's guide. , 2004 .

[46]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[47]  I. Barsoum Ductile failure and rupture mechanisms in combined tension and shear , 2006 .

[48]  D. Mohr,et al.  A New Experimental Technique for the Multi-axial Testing of Advanced High Strength Steel Sheets , 2008 .

[49]  Yuanli Bai,et al.  Application of extended Mohr–Coulomb criterion to ductile fracture , 2009 .

[50]  Frédéric Barlat,et al.  A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals , 2004 .

[51]  Michael J. Worswick,et al.  Prediction of Necking in Tubular Hydroforming Using an Extended Stress-Based Forming Limit Curve , 2007 .

[52]  R. Hill,et al.  On discontinuous plastic states, with special reference to localized necking in thin sheets , 1952 .

[53]  Yuanli Bai,et al.  Calibration of ductile fracture properties of a cast aluminum alloy , 2007 .

[54]  Otto Mohr,et al.  Abhandlungen aus dem Gebiete der technischen Mechanik , 1906 .

[55]  Thomas B. Stoughton,et al.  Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD , 2004 .

[56]  Odd Sture Hopperstad,et al.  On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study , 2003 .

[57]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[58]  James R. Rice,et al.  Localized necking in thin sheets , 1975 .

[59]  Yingbin Bao,et al.  Ductile crack formation on notched Al2024-T351 bars under compression–tension loading , 2004 .

[60]  Lallit Anand,et al.  An improved isotropic—kinematic hardening model for moderate deformation metal plasticity , 1990 .

[61]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[62]  Percy Williams Bridgman,et al.  Studies in large plastic flow and fracture , 1964 .

[63]  Yuanli Bai,et al.  Forming severity concept for predicting sheet necking under complex loading histories , 2008 .

[64]  R. Sowerby,et al.  A theoretical and experimental investigation of limit strains in sheet metal forming , 1996 .

[65]  C. D. Wilson A Critical Reexamination of Classical Metal Plasticity , 2002 .

[66]  Tomasz Wierzbicki,et al.  Closed-form solution for wedge cutting force through thin metal sheets , 1993 .

[67]  D. Bigoni,et al.  A new yield function for geomaterials , 2004 .

[68]  C. Schuh,et al.  The Mohr–Coulomb criterion from unit shear processes in metallic glass , 2004 .

[69]  J. W. Hancock,et al.  On the role of strain and stress state in ductile failure , 1983 .

[70]  T. Børvik,et al.  On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments , 2003 .

[71]  D. C. Barton,et al.  The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals , 1996 .

[72]  T. Wierzbicki,et al.  Evaluation of six fracture models in high velocity perforation , 2006 .

[73]  C. Chow,et al.  Prediction of forming limit diagrams for AL6111-T4 under non-proportional loading , 2001 .