Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems

Publisher Summary This chapter discusses the sources of noise in receivers employing either p–i–n or avalanche photodiodes (APDs) and compares the sensitivities that can be obtained using these two device structures. The effects that the primary dark current and the ionization-rate ratio have on the sensitivity of an APD receiver are considered in the chapter. The chapter compares the performance of Germanium (Ge) and In0.53Ga0.47 As/InP devices and discusses several transmission experiments using APD and p–i–n receivers. The chapter concludes by considering several mechanisms that limit the transmission–system sensitivity at the highest bit rates presently envisioned. The most important mechanisms for degrading receiver performance at high bit rates are the APD gain-bandwidth response-time limit, transmitter bandwidth, laser noise, and fiber dispersion.

[1]  T. Kaneda,et al.  Avalanche buildup time of silicon avalanche photodiodes , 1975 .

[2]  Stephen R. Forrest Gain-bandwidth-limited response in long-wavelength avalanche photodiodes , 1984 .

[3]  P. Petroff,et al.  Investigation of microplasmas in InP avalanche photodiodes , 1980, 1979 International Electron Devices Meeting.

[4]  Y. Takanashi,et al.  Temperature Dependence of Ionization Coefficients for InP and 1.3 µm InGaAsP Avalanche Photodiodes , 1981 .

[5]  Richard E. Wagner,et al.  Transmission experiments through 101 km and 84 km of single-mode fibre at 274 Mbit/s and 420 Mbit/s , 1982 .

[6]  K. Ogawa Noise caused by GaAs mesfets in optical receivers , 1981, The Bell System Technical Journal.

[7]  P. N. Robson,et al.  Effect of ionised impurity scattering on the electron transit time in GaAs and InP f.e.t.s , 1977 .

[8]  Kiyoshi Nakagawa,et al.  Detailed evaluation of an attainable repeater spacing for fibre transmission at 1.3 μm and 1.55 μm wavelengths , 1979 .

[9]  K. Ogawa,et al.  Very-high-speed back-illuminated InGaAs/InP PIN punch-through photodiodes , 1981 .

[10]  S. R. Forrest,et al.  A high gain In0.53Ga0.47As/InP avalanche photodiode with no tunneling leakage current , 1981 .

[11]  R. Singh,et al.  Erratum: Inductorless current conveyor allpass filter using grounded capacitors , 1982 .

[12]  C. Burrus,et al.  InGaAsP p-i-n photodiodes with low dark current and small capacitance , 1979 .

[13]  S. R. Forrest,et al.  Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes , 1983 .

[14]  H. Ando,et al.  Shallow‐junction p+‐n germanium avalanche photodiodes (APD’s) , 1979 .

[15]  S.R. Forrest Photoconductor receiver sensitivity , 1984, IEEE Electron Device Letters.

[16]  D. J. Malyon,et al.  102 km unrepeatered monomode fibre system experiment at 140 Mbit/s with an injection locked 1.52 μm laser transmitter , 1982 .

[17]  Takao Kaneda,et al.  Avalanche buildup time of silicon reach‐through photodiodes , 1976 .

[18]  J. Yamada,et al.  Gigabit/s optical receiver sensitivity and zero-dispersion single-mode fiber transmission at 1.55 µm , 1982 .

[19]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[20]  P. P. Smyth,et al.  Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems , 1982 .

[21]  R. E. Nahory,et al.  In0.53Ga0.47As p-i-n photodiodes for long-wavelength fibre-optic systems , 1979 .

[22]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[23]  R. Leheny,et al.  Fast photoconductive detector using p‐In0.53Ga0.47As with response to 1.7 μm , 1981 .

[24]  J. Yamada,et al.  1.55 μm optical transmission experiments at 2 Gbit/s using 51.5 km dispersion-free fibre , 1982 .

[25]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[26]  C. A. Burrus,et al.  High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.

[27]  D. Fritzsche,et al.  Fast response InP/InGaAsP heterojunction phototransistors , 1981 .

[28]  K. Ogawa,et al.  Small area ingaas/inp p-i-n photodiodes: fabrication, characteristics and performance of devices in 274 mb/s and 45 mb/s lightwave receivers at 1.31 μm wavelength , 1980 .

[29]  S. R. Forrest,et al.  Excess-noise and receiver sensitivity measurements of In0.53Ga0.47As/InP avalanche photodiodes , 1981 .

[30]  Katsuhiko Nishida,et al.  InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .

[31]  Yuichi Matsushima,et al.  High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers , 1982 .

[32]  Koichi Asatani,et al.  High-speed optical pulse transmission at 1.29-µm wavelength using low-loss single-mode fibers , 1978 .

[33]  David R. Smith,et al.  p-i-n/f.e.t. hybrid optical receiver for longer-wavelength optical communication systems , 1980 .

[34]  Thomas P. Pearsall,et al.  The Ga0.47In0.53As homojunction photodiode—A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm , 1978 .

[35]  C. Y. Chen,et al.  Modulated barrier photodiode: A new majority‐carrier photodetector , 1981 .

[36]  G. Elze,et al.  Experiences with an optical long-haul 2.24 Gbit/s transmission system at a wavelength of 1.3 μm , 1982 .

[37]  T. Kaneda,et al.  Avalanche Built-Up Time of the Germanium Avalanche Photodiode , 1973 .

[38]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[39]  K. Ogawa,et al.  Considerations for single-mode fiber systems , 1982, The Bell System Technical Journal.

[40]  O. Mikami,et al.  Fully ion-implanted p+-n germanium avalanche photodiodes , 1981 .

[41]  S. Forrest,et al.  In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling , 1980 .

[42]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[43]  A. Choudhury,et al.  Ionization coefficients measured in abrupt InP junctions , 1980 .

[44]  Nakagawa Kiyoshi,et al.  800 Mb/s fibre transmission test using low-loss and low-dispersion single-mode cable , 1979 .

[45]  Susumu Machida,et al.  Dispersion-free single-mode fibre transmission experiments up to 1.6 Gbit/s , 1979 .

[46]  P. P. Smyth,et al.  1.2 Gbit/s optical fibre transmission experiment over 113.7 km using a 1.528 μm distributed-feedback ridge-waveguide laser , 1984 .

[47]  O. Hildebrand,et al.  Ga 1-x Al x Sb avalanche photodiodes: Resonant impact ionization with very high ratio of ionization coefficients , 1981 .

[48]  S. Forrest,et al.  Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes , 1982 .

[49]  T. Mukai,et al.  800 Mbit/s optical transmission experiments with dispersion-free fibres at 1.5 μm , 1980 .

[50]  J. Yamada,et al.  Characteristics of Gbit/s optical receiver sensitivity and long-span single-mode fiber transmission at 1.3 µm , 1982 .

[51]  Osamu Mikami,et al.  New InGaAs/InP avalanche photodiode structure for the 1-1.6 µm wavelength region , 1980 .

[52]  S. R. Forrest,et al.  Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .

[53]  K. Ogawa,et al.  Small-area high-speed InP/InGaAs phototransistor , 1981 .

[54]  S. R. Forrest,et al.  Sensitivity of avalanche photodetector receivers for long-wavelength optical communications , 1982, The Bell System Technical Journal.

[55]  K. Ogawa,et al.  System experiments using 1.3 μm LEDs , 1981 .

[56]  Fukunobu Osaka,et al.  1.3 μm InP/InGaAsP planar avalanche photodiodes , 1981 .

[57]  Colin E. C. Wood,et al.  Integrated double heterostructure Ga0.47In0.53As photoreceiver with automatic gain control , 1981, IEEE Electron Device Letters.

[58]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[59]  C. A. Burrus,et al.  Dark current and breakdown characteristics of dislocation‐free InP photodiodes , 1980 .

[60]  V. Diadiuk,et al.  Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors , 1980 .

[61]  H. Card,et al.  Germanium photodetectors with induced p-n junctions , 1982, IEEE Transactions on Electron Devices.

[62]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .