Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems
暂无分享,去创建一个
[1] T. Kaneda,et al. Avalanche buildup time of silicon avalanche photodiodes , 1975 .
[2] Stephen R. Forrest. Gain-bandwidth-limited response in long-wavelength avalanche photodiodes , 1984 .
[3] P. Petroff,et al. Investigation of microplasmas in InP avalanche photodiodes , 1980, 1979 International Electron Devices Meeting.
[4] Y. Takanashi,et al. Temperature Dependence of Ionization Coefficients for InP and 1.3 µm InGaAsP Avalanche Photodiodes , 1981 .
[5] Richard E. Wagner,et al. Transmission experiments through 101 km and 84 km of single-mode fibre at 274 Mbit/s and 420 Mbit/s , 1982 .
[6] K. Ogawa. Noise caused by GaAs mesfets in optical receivers , 1981, The Bell System Technical Journal.
[7] P. N. Robson,et al. Effect of ionised impurity scattering on the electron transit time in GaAs and InP f.e.t.s , 1977 .
[8] Kiyoshi Nakagawa,et al. Detailed evaluation of an attainable repeater spacing for fibre transmission at 1.3 μm and 1.55 μm wavelengths , 1979 .
[9] K. Ogawa,et al. Very-high-speed back-illuminated InGaAs/InP PIN punch-through photodiodes , 1981 .
[10] S. R. Forrest,et al. A high gain In0.53Ga0.47As/InP avalanche photodiode with no tunneling leakage current , 1981 .
[11] R. Singh,et al. Erratum: Inductorless current conveyor allpass filter using grounded capacitors , 1982 .
[12] C. Burrus,et al. InGaAsP p-i-n photodiodes with low dark current and small capacitance , 1979 .
[13] S. R. Forrest,et al. Analysis of the dark current and photoresponse of In0.53Ga0.47As/InP avalanche photodiodes , 1983 .
[14] H. Ando,et al. Shallow‐junction p+‐n germanium avalanche photodiodes (APD’s) , 1979 .
[15] S.R. Forrest. Photoconductor receiver sensitivity , 1984, IEEE Electron Device Letters.
[16] D. J. Malyon,et al. 102 km unrepeatered monomode fibre system experiment at 140 Mbit/s with an injection locked 1.52 μm laser transmitter , 1982 .
[17] Takao Kaneda,et al. Avalanche buildup time of silicon reach‐through photodiodes , 1976 .
[18] J. Yamada,et al. Gigabit/s optical receiver sensitivity and zero-dispersion single-mode fiber transmission at 1.55 µm , 1982 .
[19] F. Capasso,et al. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.
[20] P. P. Smyth,et al. Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems , 1982 .
[21] R. E. Nahory,et al. In0.53Ga0.47As p-i-n photodiodes for long-wavelength fibre-optic systems , 1979 .
[22] R. Mcintyre. Multiplication noise in uniform avalanche diodes , 1966 .
[23] R. Leheny,et al. Fast photoconductive detector using p‐In0.53Ga0.47As with response to 1.7 μm , 1981 .
[24] J. Yamada,et al. 1.55 μm optical transmission experiments at 2 Gbit/s using 51.5 km dispersion-free fibre , 1982 .
[25] S. D. Personick,et al. Receiver design for optical fiber communication systems , 1980 .
[26] C. A. Burrus,et al. High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.
[27] D. Fritzsche,et al. Fast response InP/InGaAsP heterojunction phototransistors , 1981 .
[28] K. Ogawa,et al. Small area ingaas/inp p-i-n photodiodes: fabrication, characteristics and performance of devices in 274 mb/s and 45 mb/s lightwave receivers at 1.31 μm wavelength , 1980 .
[29] S. R. Forrest,et al. Excess-noise and receiver sensitivity measurements of In0.53Ga0.47As/InP avalanche photodiodes , 1981 .
[30] Katsuhiko Nishida,et al. InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .
[31] Yuichi Matsushima,et al. High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers , 1982 .
[32] Koichi Asatani,et al. High-speed optical pulse transmission at 1.29-µm wavelength using low-loss single-mode fibers , 1978 .
[33] David R. Smith,et al. p-i-n/f.e.t. hybrid optical receiver for longer-wavelength optical communication systems , 1980 .
[34] Thomas P. Pearsall,et al. The Ga0.47In0.53As homojunction photodiode—A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm , 1978 .
[35] C. Y. Chen,et al. Modulated barrier photodiode: A new majority‐carrier photodetector , 1981 .
[36] G. Elze,et al. Experiences with an optical long-haul 2.24 Gbit/s transmission system at a wavelength of 1.3 μm , 1982 .
[37] T. Kaneda,et al. Avalanche Built-Up Time of the Germanium Avalanche Photodiode , 1973 .
[38] S. M. Sze,et al. Physics of semiconductor devices , 1969 .
[39] K. Ogawa,et al. Considerations for single-mode fiber systems , 1982, The Bell System Technical Journal.
[40] O. Mikami,et al. Fully ion-implanted p+-n germanium avalanche photodiodes , 1981 .
[41] S. Forrest,et al. In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling , 1980 .
[42] S. Personick. Receiver design for digital fiber optic communication systems, II , 1973 .
[43] A. Choudhury,et al. Ionization coefficients measured in abrupt InP junctions , 1980 .
[44] Nakagawa Kiyoshi,et al. 800 Mb/s fibre transmission test using low-loss and low-dispersion single-mode cable , 1979 .
[45] Susumu Machida,et al. Dispersion-free single-mode fibre transmission experiments up to 1.6 Gbit/s , 1979 .
[46] P. P. Smyth,et al. 1.2 Gbit/s optical fibre transmission experiment over 113.7 km using a 1.528 μm distributed-feedback ridge-waveguide laser , 1984 .
[47] O. Hildebrand,et al. Ga 1-x Al x Sb avalanche photodiodes: Resonant impact ionization with very high ratio of ionization coefficients , 1981 .
[48] S. Forrest,et al. Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes , 1982 .
[49] T. Mukai,et al. 800 Mbit/s optical transmission experiments with dispersion-free fibres at 1.5 μm , 1980 .
[50] J. Yamada,et al. Characteristics of Gbit/s optical receiver sensitivity and long-span single-mode fiber transmission at 1.3 µm , 1982 .
[51] Osamu Mikami,et al. New InGaAs/InP avalanche photodiode structure for the 1-1.6 µm wavelength region , 1980 .
[52] S. R. Forrest,et al. Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .
[53] K. Ogawa,et al. Small-area high-speed InP/InGaAs phototransistor , 1981 .
[54] S. R. Forrest,et al. Sensitivity of avalanche photodetector receivers for long-wavelength optical communications , 1982, The Bell System Technical Journal.
[55] K. Ogawa,et al. System experiments using 1.3 μm LEDs , 1981 .
[56] Fukunobu Osaka,et al. 1.3 μm InP/InGaAsP planar avalanche photodiodes , 1981 .
[57] Colin E. C. Wood,et al. Integrated double heterostructure Ga0.47In0.53As photoreceiver with automatic gain control , 1981, IEEE Electron Device Letters.
[58] R. B. Emmons,et al. Avalanche‐Photodiode Frequency Response , 1967 .
[59] C. A. Burrus,et al. Dark current and breakdown characteristics of dislocation‐free InP photodiodes , 1980 .
[60] V. Diadiuk,et al. Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors , 1980 .
[61] H. Card,et al. Germanium photodetectors with induced p-n junctions , 1982, IEEE Transactions on Electron Devices.
[62] Federico Capasso,et al. Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .