Towards genome-scale signalling-network reconstructions

Biological signalling networks allow living organisms to issue an integrated response to current conditions and make limited predictions about future environmental changes. Small-scale dynamic models of signalling cascades, including mitogen-activated protein kinase cascades, have been developed to generate hypotheses about signal transduction. Owing to technical limitations, these models and the hypotheses they generate have focused on a limited subset of signalling molecules. Now that we can simultaneously measure a substantial portion of the molecular components of a cell, we can begin to develop and test systems-level models of cellular signalling and regulatory processes, therefore gaining insights into the 'thought' processes of a cell.

[1]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of Molecular Biology.

[2]  Tony Pawson,et al.  Protein modules and signalling networks , 1995, Nature.

[3]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[4]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[5]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[6]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[8]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[9]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[10]  Sangdun Choi,et al.  Unravelling the signal-transduction network in B lymphocytes , 2002, Nature.

[11]  Upinder S. Bhalla,et al.  The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks , 2003, Bioinform..

[12]  R. Karp,et al.  Conserved pathways within bacteria and yeast as revealed by global protein network alignment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Upinder S Bhalla,et al.  Understanding complex signaling networks through models and metaphors. , 2003, Progress in biophysics and molecular biology.

[14]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[15]  B. Palsson,et al.  Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[17]  Peter D. Karp,et al.  A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases , 2004, BMC Bioinformatics.

[18]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[19]  Giulio Superti-Furga,et al.  A physical and functional map of the human TNF-α/NF-κB signal transduction pathway , 2004, Nature Cell Biology.

[20]  L. Donehower,et al.  Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK–mediated activation of the p16Ink4a-p19Arf pathway , 2004, Nature Genetics.

[21]  Harvey J. Greenberg,et al.  Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical Data* , 2004, Journal of Biological Chemistry.

[22]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[23]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[24]  Jason A. Papin,et al.  Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. , 2004, Journal of theoretical biology.

[25]  L. Cantley,et al.  The Crohn's Disease Protein, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO , 2004, Current Biology.

[26]  Huilin Zhou,et al.  Global Analyses of Sumoylated Proteins in Saccharomyces cerevisiae , 2004, Journal of Biological Chemistry.

[27]  E. Dennis,et al.  Handbook of cell signaling , 2004 .

[28]  J. Liao,et al.  Design of artificial cell-cell communication using gene and metabolic networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[30]  Stefan Schuster,et al.  A theoretical framework for detecting signal transfer routes in signalling networks , 2005, Comput. Chem. Eng..

[31]  Yoav Freund,et al.  Identifying metabolic enzymes with multiple types of association evidence , 2006, BMC Bioinformatics.

[32]  Z. N. Oltvai,et al.  Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Liao,et al.  A synthetic gene–metabolic oscillator , 2005, Nature.

[34]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[35]  Shoshana J. Wodak,et al.  Metabolic PathFinding: inferring relevant pathways in biochemical networks , 2005, Nucleic Acids Res..

[36]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[37]  Craig Stephens,et al.  Conserved modular design of an oxygen sensory/signaling network with species-specific output , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Vitkup,et al.  Influence of metabolic network structure and function on enzyme evolution , 2006, Genome Biology.

[39]  Steffen Klamt,et al.  A methodology for the structural and functional analysis of signaling and regulatory networks , 2006, BMC Bioinformatics.

[40]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[41]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[42]  L. Nielsen,et al.  Modeling Hybridoma Cell Metabolism Using a Generic Genome‐Scale Metabolic Model of Mus musculus , 2008, Biotechnology progress.

[43]  Mirit I Aladjem,et al.  Circuit diagrams for biological networks , 2006, Molecular systems biology.

[44]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[45]  W. Lim,et al.  Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. , 2006, Annual review of biochemistry.

[46]  Sourav Bandyopadhyay,et al.  Systematic identification of functional orthologs based on protein network comparison. , 2006, Genome research.

[47]  Bernhard O. Palsson,et al.  Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems , 2006, PLoS Comput. Biol..

[48]  O. Myklebost,et al.  Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  H. Kitano,et al.  A comprehensive map of the toll-like receptor signaling network , 2006, Molecular systems biology.

[50]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[51]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[52]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[53]  Madhukar S. Dasika,et al.  A computational framework for the topological analysis and targeted disruption of signal transduction networks. , 2006, Biophysical journal.

[54]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[55]  Neema Jamshidi,et al.  Systems biology of SNPs , 2006, Molecular systems biology.

[56]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[57]  Chemical combination effects predict connectivity in biological systems , 2007, Molecular systems biology.

[58]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[59]  Jens Nielsen,et al.  Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks , 2008, BMC Systems Biology.

[60]  Adam A. Friedman,et al.  Genetic Screening for Signal Transduction in the Era of Network Biology , 2007, Cell.

[61]  Vesteinn Thorsson,et al.  Prediction of phenotype and gene expression for combinations of mutations , 2007, Molecular systems biology.

[62]  James E. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[63]  James C Liao,et al.  Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[64]  Andrei L Osterman,et al.  A subsystems-based approach to the identification of drug targets in bacterial pathogens. , 2007, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[65]  Steffen Klamt,et al.  Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction , 2008, BMC Systems Biology.

[66]  Stefan Wiemann,et al.  Combinatorial RNAi for quantitative protein network analysis , 2007, Proceedings of the National Academy of Sciences.

[67]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[68]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[69]  Geoffrey J. Barton,et al.  SNAPPI-DB: a database and API of Structures, iNterfaces and Alignments for Protein–Protein Interactions , 2007, Nucleic Acids Res..

[70]  Martin Fussenegger,et al.  Synthetic ecosystems based on airborne inter- and intrakingdom communication , 2007, Proceedings of the National Academy of Sciences.

[71]  Steffen Klamt,et al.  A Logical Model Provides Insights into T Cell Receptor Signaling , 2007, PLoS Comput. Biol..

[72]  Feng Luo,et al.  Modular organization of protein interaction networks , 2007, Bioinform..

[73]  Igor Goryanin,et al.  A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola , 2009, BMC Systems Biology.

[74]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[75]  Jason A. Papin,et al.  Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major , 2008, Molecular systems biology.

[76]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[77]  A. Fraser,et al.  A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans , 2008, Nature Genetics.

[78]  Robert P. St.Onge,et al.  Defining genetic interaction , 2008, Proceedings of the National Academy of Sciences.

[79]  Eric H Davidson,et al.  Properties of developmental gene regulatory networks , 2008, Proceedings of the National Academy of Sciences.

[80]  B. Andrews,et al.  Linking the kinome and phosphorylome--a comprehensive review of approaches to find kinase targets. , 2008, Molecular bioSystems.

[81]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2008 update , 2008, Nucleic Acids Res..

[82]  Chung-Yen Lin,et al.  Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology , 2008, Nucleic Acids Res..

[83]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[84]  Trey Ideker,et al.  Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data , 2008, PLoS Comput. Biol..

[85]  L. Aravind,et al.  Reconstructing the ubiquitin network - cross-talk with other systems and identification of novel functions , 2009, Genome Biology.

[86]  R. Germain,et al.  Variability and Robustness in T Cell Activation from Regulated Heterogeneity in Protein Levels , 2008, Science.

[87]  J. Liao,et al.  Determination of the Escherichia coli S-Nitrosoglutathione Response Network Using Integrated Biochemical and Systems Analysis* , 2008, Journal of Biological Chemistry.

[88]  Teresa M. Przytycka,et al.  DOMINE: a database of protein domain interactions , 2007, Nucleic Acids Res..

[89]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[90]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[91]  Bernhard O. Palsson,et al.  Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction , 2009, BMC Systems Biology.

[92]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[93]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[94]  L. Wiesmüller,et al.  DNA repair, damage signaling and carcinogenesis. , 2008, DNA repair.

[95]  M. Mann,et al.  Dissection of the insulin signaling pathway via quantitative phosphoproteomics , 2008, Proceedings of the National Academy of Sciences.

[96]  Jens Nielsen,et al.  Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae , 2009, BMC Systems Biology.

[97]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[98]  Mark A. Ragan,et al.  BMC Systems Biology BioMed Central Research article Protein-protein interaction as a predictor of subcellular location , 2008 .

[99]  Adam P Arkin,et al.  Modularity of stress response evolution , 2008, Proceedings of the National Academy of Sciences.

[100]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[101]  Michael T. Laub,et al.  Rewiring the Specificity of Two-Component Signal Transduction Systems , 2008, Cell.

[102]  Martin Jones,et al.  IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels , 2008, Nucleic Acids Res..

[103]  Arthur Brady,et al.  Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways , 2009, PloS one.

[104]  P. Pryciak,et al.  Designing new cellular signaling pathways. , 2009, Chemistry & biology.

[105]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[106]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[107]  Michael C. Jewett,et al.  Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p , 2009, Proceedings of the National Academy of Sciences.

[108]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[109]  Hiroaki Kitano,et al.  Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway , 2009, Molecular systems biology.

[110]  Ali R. Zomorrodi,et al.  Genome-scale gene/reaction essentiality and synthetic lethality analysis , 2009, Molecular systems biology.

[111]  L. Bossi,et al.  Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. , 2009, Genes & development.

[112]  Chikara Furusawa,et al.  Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum , 2009, Microbial cell factories.

[113]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[114]  Tony Pawson,et al.  Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases , 2009, Science Signaling.

[115]  Bei Wang,et al.  Redefining the p53 response element , 2009, Proceedings of the National Academy of Sciences.

[116]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[117]  A. Barabasi,et al.  Targets Drug Genomes Identify Novel Antimicrobial Staphylococcus Aureus of Multiple Reconstruction and Flux Balance Analysis Comparative Genome-scale Metabolic Supplemental Material , 2009 .

[118]  M. Simon,et al.  Deciphering Signaling Outcomes from a System of Complex Networks , 2009, Science Signaling.

[119]  Jens Timmer,et al.  Systems-level interactions between insulin–EGF networks amplify mitogenic signaling , 2009, Molecular systems biology.

[120]  W. Lim,et al.  Evolution of Phosphoregulation: Comparison of Phosphorylation Patterns across Yeast Species , 2009, PLoS biology.

[121]  Homme W Hellinga,et al.  Engineering key components in a synthetic eukaryotic signal transduction pathway , 2009, Molecular systems biology.

[122]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[123]  Gabriel C. Wu,et al.  Synthetic protein scaffolds provide modular control over metabolic flux , 2009, Nature Biotechnology.

[124]  G. Church,et al.  Synthetic Gene Networks That Count , 2009, Science.

[125]  Gary D Bader,et al.  Rapid Evolution of Functional Complexity in a Domain Family , 2009, Science Signaling.

[126]  M. Vingron,et al.  Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments , 2009, Molecular systems biology.

[127]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[128]  Bernhard O. Palsson,et al.  Identification of Potential Pathway Mediation Targets in Toll-like Receptor Signaling , 2009, PLoS Comput. Biol..

[129]  Feng Luo,et al.  Deterministic graph-theoretic algorithm for detecting modules in biological interaction networks , 2010, Int. J. Bioinform. Res. Appl..

[130]  Adam M. Feist,et al.  Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. , 2010, Metabolic engineering.

[131]  Jennifer M. Rust,et al.  The BioGRID Interaction Database , 2011 .