On the role of entanglement in quantum-computational speed-up

For any quantum algorithm operating on pure states, we prove that the presence of multi‐partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed‐up over classical computation. Furthermore, we prove that the algorithm can be efficiently simulated classically to within a prescribed tolerance η even if a suitably small amount of global entanglement is present. We explicitly identify the occurrence of increasing multi‐partite entanglement in Shor's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed‐up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure‐state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum‐computational power.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  R. Feynman Simulating physics with computers , 1999 .

[3]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[4]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  R. Bhatia Matrix Analysis , 1996 .

[7]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[8]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[9]  R. Jozsa,et al.  The Geometric Universe , 1998 .

[10]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.

[12]  U. Vazirani On the power of quantum computation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[14]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[15]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[17]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[18]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[19]  Michael A. Nielsen,et al.  Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .

[20]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[21]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .