A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces

[1]  Ronaldo I. Borja,et al.  Extended finite element framework for fault rupture dynamics including bulk plasticity , 2013 .

[2]  Nicolas Moës,et al.  Large sliding contact along branched discontinuities with X-FEM , 2013 .

[3]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[4]  M. Aliabadi,et al.  A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials , 2013 .

[5]  John E. Dolbow,et al.  Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .

[6]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[7]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[8]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[9]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[10]  Tod A. Laursen,et al.  A Nitsche embedded mesh method , 2012 .

[11]  Marie-Christine Baietto,et al.  Stabilized global–local X‐FEM for 3D non‐planar frictional crack using relevant meshes , 2011 .

[12]  Paolo Zunino,et al.  An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .

[13]  Ethan T. Coon,et al.  A Nitsche-extended finite element method for earthquake rupture on complex fault systems , 2011 .

[14]  Ted A. Long,et al.  On the use of enriched finite element method to model subsurface features in porous media flow problems , 2011 .

[15]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .

[16]  Carlos Armando Duarte,et al.  The role of cohesive properties on intergranular crack propagation in brittle polycrystals , 2011 .

[17]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[18]  Ronaldo I. Borja,et al.  Finite deformation formulation for embedded frictional crack with the extended finite element method , 2010 .

[19]  Amir R. Khoei,et al.  Modeling of large deformation – Large sliding contact via the penalty X-FEM technique , 2010 .

[20]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[21]  C. Duarte,et al.  Generalized finite element enrichment functions for discontinuous gradient fields , 2010 .

[22]  Guillaume Caumon,et al.  Balanced restoration of geological volumes with relaxed meshing constraints , 2010, Comput. Geosci..

[23]  M. Mayr Different Sliding Laws on Embedded Interfaces using Lagrange Multipliers, Penalty Method and Nitsche’s Method , 2010 .

[24]  Hubert Maigre,et al.  New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials , 2009 .

[25]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[26]  Ronaldo I. Borja,et al.  An extended finite element framework for slow‐rate frictional faulting with bulk plasticity and variable friction , 2009 .

[27]  Samuel Geniaut,et al.  An X‐FEM approach for large sliding contact along discontinuities , 2009 .

[28]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[29]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[30]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[31]  Wei Li,et al.  A virtual environment for the interrogation of 3D polycrystalline microstructures including grain size effects , 2009 .

[32]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[33]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[34]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[35]  Ronaldo I. Borja,et al.  A contact algorithm for frictional crack propagation with the extended finite element method , 2008 .

[36]  K. T. Ramesh,et al.  Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties , 2008 .

[37]  S. Owen,et al.  Effects of Nonplanar Fault Topology and Mechanical Interaction on Fault-Slip Distributions in the Ventura Basin, California , 2008 .

[38]  Julien Yvonnet,et al.  An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites , 2008 .

[39]  Ekkehard Ramm,et al.  Modeling of failure in composites by X-FEM and level sets within a multiscale framework , 2008 .

[40]  Hubert Maigre,et al.  Dynamic crack propagation under mixed-mode loading – Comparison between experiments and X-FEM simulations , 2007 .

[41]  A. Combescure,et al.  A mixed augmented Lagrangian‐extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact , 2007 .

[42]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[43]  M. H. Aliabadi,et al.  A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials , 2007 .

[44]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[45]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[46]  J. Rice,et al.  Role of fault branches in earthquake rupture dynamics , 2006 .

[47]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[48]  J. Molinari,et al.  Micromechanical finite element modeling of compressive fracture in confined alumina ceramic , 2006 .

[49]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[50]  Amir R. Khoei,et al.  Extended finite element method in plasticity forming of powder compaction with contact friction , 2006 .

[51]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[52]  F. Maerten,et al.  Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications , 2006 .

[53]  E. Ramm,et al.  Interface material failure modeled by the extended finite-element method and level sets , 2006 .

[54]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[55]  Alain Combescure,et al.  Extended finite element method for numerical simulation of 3D fatigue crack growth , 2005 .

[56]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[57]  L. Anand,et al.  Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals , 2004 .

[58]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[59]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[60]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[61]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[62]  T. Baker,et al.  Brittle fracture in polycrystalline microstructures with the extended finite element method , 2003 .

[63]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[64]  Horacio Dante Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples , 2003 .

[65]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[66]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[67]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[68]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[69]  M. A. Crisfield,et al.  Re‐visiting the contact patch test , 2000 .

[70]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[71]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[72]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[73]  P. Wriggers,et al.  FINITE ELEMENT FORMULATION OF LARGE DEFORMATION IMPACT-CONTACT PROBLEMS WITH FRICTION , 1990 .

[74]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[75]  J. Oden,et al.  Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws , 1984 .

[76]  F. Ghahremani Effect of grain boundary sliding on anelasticity of polycrystals , 1980 .

[77]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .