2-rhodaoxetanes: their formation of oxidation of [RhI(ethene)]+ and their reactivity upon protonation.

New cationic, pentacoordinate complexes [(TPA)Rh1(ethene)]+, [1a]+, and [(MeTPA)Rh1(ethene)]+, [1b]+, have been prepared (TPA = N,N,N-tri(2-pyridylmethyl)amine, MeTPA = N-[(6-methyl-2-pyridyl)-methyl]-N,N-di(2-pyridylmethyl)amine). Complex [1a]+ is selectively converted by aqueous HCl to [(TPA)RhIII-(ethyl)Cl]+, [2a]+. The same reaction with [1b]+ results in the [(MeTPA)RhIII-(ethyl)Cl]+ isomers [2b]+ and [2c]+. Treatment of [1a]+ and [1b]+ with aqueous H2O2 results in a selective oxygenation to the unsubstituted 2-rho-da(III)oxetanes (1-oxa-2-rhoda(III)cyclo-butanes) [(TPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3a]+, and [(MeTPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3b]+. The reactivity of 2-rhodaoxetanes [3a]+ and [3b]+ is dominated by the nucleophilic character of their 2-oxyethyl oxygen. Reaction of [3a]+ and [3b]+ with the non-coordinating acid HBAr(f)4 results in the dicationic protonated 2-rhodaoxetanes [(TPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4a]2+, and [(MeTPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4b]2+. These eliminate acetaldehyde at room temperature, probably via a coordinatively unsaturated kappa1-2-hydroxyethyl complex. In acetonitrile, complex [4a]2+ is stabilised as [(TPA)-RhIII(kappa1-2-hydroxyethyl)(MeCN)]2+, [5a]2+, whereas the MeTPA analogue [4b]2+ continues to eliminate acetaldehyde. Reaction of [3a]+ with NH4Cl and Mel results in the coordinatively saturated complexes [(TPA)RhIII(kappa1-2-hydroxyethyl)(Cl)]+, [6a]+, and [(TPA)-RhIII(kappa1-2-methoxyethyl)(I)+, [7a]+, respectively. Reaction of [3a]+ with NH4+ in MeCN results in formation of the dicationic metallacyclic amide [(TPA)-RhIII [kappa2-O,C-2-(acetylamino)ethyl]]2+, [9]2+, via the intermediates [4a]2+, [5a]2+ and the metallacyclic iminoester [(TPA)RhIII[kappa2-N,C-2-(acetimidoyloxy)ethyl]]2+, [8]2+. The observed overall conversion of the [Rh(I)(ethene)] complex [1a]+ to the metallacyclic amide [9]2+ via 2-rhodaoxetane [3a]+, provides a new route for the amidation of a [RhI(ethene)] fragment.