Graph entropy and quantum sorting problems

Let P = (X, < <inf>P</inf>) be a partial order on a set of n elements X = x<inf>1</inf>, x<inf>2</inf>,..., x<inf>n</inf>. Define the <i>quantum sorting problem</i> QSORT<inf>P</inf> as: given n distinct numbers x<inf>1</inf>, x<inf>2</inf>,..., x<inf>n</inf> consistent with P, sort them by a quantum decision tree using comparisons of the form "x<inf>i</inf>: x<inf>j</inf>". Let Q<inf>ε</inf>(P) be the minimum number of queries used by any quantum decision tree for solving QSORT<inf>P</inf> with error less than ε (where 0 < ε < 1/10 is fixed). It was proved by Hoyer, Neerbek and Shi (<i>Algorithmica</i> <b>34</b> (2002), 429--448) that, when P<inf>0</inf> is the empty partial order, Q<inf>ε</inf>(P<inf>0</inf>) ≥ Ω (n log n), i. e., the classical information lower bound holds for quantum decision trees when the input permutations are unrestricted.In this paper we show that the classical information lower bound holds, up to an additive linear term, for quantum decision trees for any partial order P. Precisely, we prove Q<inf>ε</inf>(P) ≥ c log<inf>2</inf> e(P)-c'n where c,c' > 0 are constants and e(P) is the number of linear orderings consistent with P. Our proof builds on an interesting connection between sorting and Korner's graph entropy that was first noted and developed by Kahn and Kim (<i>JCSS</i> <b>51</b>(1995), 390--399).

[1]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[2]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[3]  Ronald de Wolf,et al.  A Lower Bound for Quantum Search of an Ordered List , 1999, Inf. Process. Lett..

[4]  George Havas,et al.  Perfect Hashing , 1997, Theor. Comput. Sci..

[5]  László Lovász,et al.  Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..

[6]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[7]  Yaoyun Shi Entropy lower bounds for quantum decision tree complexity , 2002, Inf. Process. Lett..

[8]  Avi Wigderson,et al.  Perfect hashing, graph entropy, and circuit complexity , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[9]  Jaikumar Radhakrishnan Better bounds for threshold formulas , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[10]  Michael L. Fredman,et al.  How Good is the Information Theory Bound in Sorting? , 1976, Theor. Comput. Sci..

[11]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[12]  Jan Neerbek,et al.  Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness , 2002, Algorithmica.

[13]  Scott Aaronson,et al.  Quantum lower bound for the collision problem , 2001, STOC '02.

[14]  M. Sipser,et al.  A Limit on the Speed of Quantum Computation for Insertion into an Ordered List , 1998 .

[15]  Andris Ambainis,et al.  A better lower bound for quantum algorithms searching an ordered list , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[16]  Jeff Kahn,et al.  Entropy and sorting , 1992, STOC '92.

[17]  Nathan Linial,et al.  Balancing extensions via Brunn-Minkowski , 1991, Comb..

[18]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[19]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[20]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[21]  J. Kahn,et al.  Balancing poset extensions , 1984 .