Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action

Proline-rich antimicrobial peptides are a group of cationic host defense peptides of vertebrates and invertebrates characterized by a high content of proline residues, often associated with arginine residues in repeated motifs. Those isolated from some mammalian and insect species, although not evolutionarily related, use a similar mechanism to selectively kill Gram-negative bacteria, with a low toxicity to animals. Unlike other types of antimicrobial peptides, their mode of action does not involve the lysis of bacterial membranes but entails penetration into susceptible cells, where they then act intracellularly. Some aspects of the transport system and cytoplasmic targets have been elucidated. These features make them attractive both as anti-infective lead compounds and as a new class of potential cell-penetrating peptides capable of internalising membrane-impermeant drugs into both bacterial and eukaryotic cells

[1]  R. Hancock,et al.  Antimicrobial Activity and Bacterial-Membrane Interaction of Ovine-Derived Cathelicidins , 2004, Antimicrobial Agents and Chemotherapy.

[2]  J. Tam,et al.  Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. , 2002, Biochemistry.

[3]  J. Kobayashi,et al.  Cloning of mRNA Sequences for Two Antibacterial Peptides in a Hemipteran Insect, Riptortus clavatus , 1996, Zoological science.

[4]  L. Otvos,et al.  Alternative stabilities of a proline‐rich antibacterial peptide in vitro and in vivo , 2008, Protein science : a publication of the Protein Society.

[5]  M. Benincasa,et al.  Role of Cathelicidin Peptides in Bovine Host Defense and Healing , 2010, Probiotics and antimicrobial proteins.

[6]  Ralf Hoffmann,et al.  Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. , 2002, European journal of biochemistry.

[7]  S. Lovas,et al.  Interaction between heat shock proteins and antimicrobial peptides. , 2000, Biochemistry.

[8]  P. A. Raj,et al.  Functional domain and poly‐l‐proline II conformation for candidacidal activity of bactenecin 5 , 1995, FEBS letters.

[9]  L. Otvos,et al.  The designer proline-rich antibacterial peptide A3-APO is effective against systemic Escherichia coli infections in different mouse models. , 2010, International journal of antimicrobial agents.

[10]  Jr L. Otvos The short proline-rich antibacterial peptide family , 2002, Cellular and Molecular Life Sciences CMLS.

[11]  P. Tempst,et al.  Apidaecins: antibacterial peptides from honeybees. , 1989, The EMBO journal.

[12]  I. Shalit,et al.  All‐D‐magainin: chirality, antimicrobial activity and proteolytic resistance , 1990, FEBS letters.

[13]  R. Farías,et al.  The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein , 1995, Journal of bacteriology.

[14]  C. Fanali,et al.  Structural and functional characterization of the porcine proline–rich antifungal peptide SP‐B isolated from salivary gland granules , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[15]  P. Bulet,et al.  Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda) , 2000, Cellular and Molecular Life Sciences CMLS.

[16]  P. Tempst,et al.  Lethal Effects of Apidaecin on Escherichia coliInvolve Sequential Molecular Interactions with Diverse Targets* , 1999, The Journal of Biological Chemistry.

[17]  J. Fiévet,et al.  A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. , 2004, The Biochemical journal.

[18]  J. Briand,et al.  The inducible antibacterial peptides of the Hemipteran insect Palomena prasina: Identification of a unique family of prolinerich peptides and of a novel insect defensin , 1996 .

[19]  E. Levashina,et al.  Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. , 1995, European journal of biochemistry.

[20]  V. Smith,et al.  Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. , 1996, European journal of biochemistry.

[21]  Hailong Yang,et al.  Direct antimicrobial activities of PR-bombesin. , 2006, Life sciences.

[22]  R. Gennaro,et al.  Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family. , 1998, Biochimica et biophysica acta.

[23]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[24]  L. Otvos,et al.  Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics , 2008, Peptides.

[25]  A. Dorn,et al.  Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera). , 2001, Journal of invertebrate pathology.

[26]  M. Przybylski,et al.  Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. , 1990, The Journal of biological chemistry.

[27]  T. Haug,et al.  Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. , 2008, Developmental and comparative immunology.

[28]  M. Fleming,et al.  Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). , 1990, European journal of biochemistry.

[29]  M. Benincasa,et al.  Investigating the mode of action of proline-rich antimicrobial peptides using a genetic approach: a tool to identify new bacterial targets amenable to the design of novel antibiotics. , 2008, Methods in molecular biology.

[30]  R. Hoffmann,et al.  Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. , 2005, Journal of medicinal chemistry.

[31]  So young Lee,et al.  Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: characterization and expression pattern. , 2007, Developmental and comparative immunology.

[32]  A. van Dorsselaer,et al.  Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. , 1999, European journal of biochemistry.

[33]  R. Gennaro,et al.  Structure and biology of cathelicidins. , 2000, Advances in experimental medicine and biology.

[34]  R. Gennaro,et al.  Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils , 1989, Infection and immunity.

[35]  Isabelle Mougenot,et al.  PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. , 2006, Developmental and comparative immunology.

[36]  E. Bachère,et al.  Solution Structure of the Recombinant Penaeidin-3, a Shrimp Antimicrobial Peptide* , 2003, Journal of Biological Chemistry.

[37]  S. Jackson,et al.  Antibacterial peptide PR-39 affects local nitric oxide and preserves tissue oxygenation in the liver during septic shock. , 2002, Biochimica et biophysica acta.

[38]  M. Benincasa,et al.  The proline-rich peptide Bac7(1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection , 2010, BMC Microbiology.

[39]  C. Ross,et al.  Tissue hypoxia during bacterial sepsis is attenuated by PR-39, an antibacterial peptide. , 2003, Advances in experimental medicine and biology.

[40]  M. Zanetti,et al.  Molecular cloning of Bac7, a proline‐ and arginine‐rich antimicrobial peptide from bovine neutrophils , 1994, FEBS letters.

[41]  H. G. Boman,et al.  Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine , 1993, Infection and immunity.

[42]  M. Klagsbrun,et al.  Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Ganz,et al.  Cathelicidins: a family of endogenous antimicrobial peptides , 2002, Current opinion in hematology.

[44]  E. Reddi,et al.  Substitution of the arginine/leucine residues in apidaecin Ib with peptoid residues: effect on antimicrobial activity, cellular uptake, and proteolytic degradation. , 2009, Journal of medicinal chemistry.

[45]  M. Benincasa,et al.  Role of the Escherichia coli SbmA in the antimicrobial activity of proline‐rich peptides , 2007, Molecular microbiology.

[46]  E. Bachère,et al.  Solution Structure of Synthetic Penaeidin-4 with Structural and Functional Comparisons with Penaeidin-3* , 2005, Journal of Biological Chemistry.

[47]  Dmitri B Papkovsky,et al.  Bactenecin 7 peptide fragment as a tool for intracellular delivery of a phosphorescent oxygen sensor , 2010, The FEBS journal.

[48]  P. Carmeliet,et al.  PR39, a peptide regulator of angiogenesis , 2000, Nature Medicine.

[49]  M. Strand,et al.  Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. , 2005, Insect biochemistry and molecular biology.

[50]  R. Kolter,et al.  Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Burkin,et al.  Localization and genomic organization of sheep antimicrobial peptide genes. , 1998, Gene.

[52]  R. Hoffmann,et al.  Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. , 2010, Journal of medicinal chemistry.

[53]  V. Mutt,et al.  Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. , 1991, European journal of biochemistry.

[54]  L. Otvos,et al.  An insect antibacterial peptide-based drug delivery system. , 2004, Molecular pharmaceutics.

[55]  R. Hancock,et al.  Host defence peptides from invertebrates--emerging antimicrobial strategies. , 2006, Immunobiology.

[56]  D. Craik,et al.  Insect peptides with improved protease‐resistance protect mice against bacterial infection , 2008, Protein science : a publication of the Protein Society.

[57]  S. Lovas,et al.  The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. , 2001, Biochemistry.

[58]  A. Roujeinikova,et al.  Allosteric Coupling between the Lid and Interdomain Linker in DnaK Revealed by Inhibitor Binding Studies , 2008, Journal of bacteriology.

[59]  M. Benincasa,et al.  Rapid and Reliable Detection of Antimicrobial Peptide Penetration into Gram-Negative Bacteria Based on Fluorescence Quenching , 2009, Antimicrobial Agents and Chemotherapy.

[60]  R. C. Dutta,et al.  Functional mapping of apidaecin through secondary structure correlation. , 2008, The international journal of biochemistry & cell biology.

[61]  Martin Hasselmann,et al.  Rapid evolution of immune proteins in social insects. , 2009, Molecular biology and evolution.

[62]  K. Stone,et al.  Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab. , 2011, Developmental and comparative immunology.

[63]  M. Benincasa,et al.  Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates , 2004, Peptides.

[64]  T. Ohtake,et al.  Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Y. Guéguen,et al.  Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. , 2009, Molecular immunology.

[66]  R. Lehrer,et al.  Purification and Properties of Proline-Rich Antimicrobial Peptides from Sheep and Goat Leukocytes , 1999, Infection and Immunity.

[67]  M. Yamakawa,et al.  A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. , 1995, The Biochemical journal.

[68]  Y. Shai,et al.  Mechanistic and Functional Studies of the Interaction of a Proline-rich Antimicrobial Peptide with Mammalian Cells* , 2006, Journal of Biological Chemistry.

[69]  H. Erdjument-Bromage,et al.  Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance. , 1994, The Journal of biological chemistry.

[70]  J. Johansson,et al.  Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. , 1994, European journal of biochemistry.

[71]  A. Tassanakajon,et al.  Two novel antimicrobial peptides, arasin-likeSp and GRPSp, from the mud crab Scylla paramamosain, exhibit the activity against some crustacean pathogenic bacteria. , 2011, Fish & shellfish immunology.

[72]  S. N. Witt,et al.  The insect antimicrobial peptide, l‐pyrrhocoricin, binds to and stimulates the ATPase activity of both wild‐type and lidless DnaK , 2004, FEBS letters.

[73]  P. Blackshear,et al.  Diversity in penaeidin antimicrobial peptide form and function. , 2008, Developmental and comparative immunology.

[74]  M. Benincasa,et al.  Dual mode of action of Bac7, a proline-rich antibacterial peptide. , 2006, Biochimica et biophysica acta.

[75]  D. S. McVey,et al.  Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide , 1996, Antimicrobial agents and chemotherapy.

[76]  A. van Dorsselaer,et al.  A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. , 1993, The Journal of biological chemistry.

[77]  M. Mayer,et al.  Hsp70 chaperones: Cellular functions and molecular mechanism , 2005, Cellular and Molecular Life Sciences.

[78]  B. Lenarčič,et al.  Molecular cloning of a putative homolog of proline/arginine‐rich antibacterial peptides from porcine bone marrow , 1993, FEBS letters.

[79]  B. Bukau,et al.  Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol , 2001, Molecular microbiology.

[80]  C. Ross,et al.  Chemoattractant properties of PR‐39, a neutrophil antibacterial peptide , 1997, Journal of leukocyte biology.

[81]  R. B. Merrifield,et al.  All-D amino acid-containing channel-forming antibiotic peptides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Wei-fen Li,et al.  Apidaecin-type peptides: Biodiversity, structure–function relationships and mode of action , 2006, Peptides.

[83]  P. Bulet,et al.  Antimicrobial peptides in insects; structure and function. , 1999, Developmental and comparative immunology.

[84]  E. Bachère,et al.  Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. , 2010, Molecular immunology.

[85]  R. Gennaro,et al.  Anti-microbial activity and cell binding are controlled by sequence determinants in the anti-microbial peptide PR-39. , 2001, The Journal of investigative dermatology.

[86]  L. Otvos,et al.  Antibacterial peptides isolated from insects. , 2000, Journal of peptide science : an official publication of the European Peptide Society.

[87]  L. Otvos,et al.  The antibacterial effect of a proline-rich antibacterial peptide A3-APO. , 2009, Current medicinal chemistry.

[88]  P. Tempst,et al.  Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. , 1994, Biochemical and biophysical research communications.

[89]  T. Niidome,et al.  Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes , 2001, Journal of peptide science : an official publication of the European Peptide Society.

[90]  D. Andersson,et al.  Mechanism and Fitness Costs of PR-39 Resistance in Salmonella enterica Serovar Typhimurium LT2 , 2008, Antimicrobial Agents and Chemotherapy.

[91]  V. Saba,et al.  Neutralization of Endotoxin In Vitro and In Vivo by BAC7(1-35), a Proline-Rich Antibacterial Peptide , 2003, Shock.

[92]  Guozhen Liu,et al.  Screening and cloning of antimicrobial DNA sequences using a vital staining method. , 2009, Gene.

[93]  G. Walker,et al.  Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. , 2000, Science.

[94]  H. Steiner,et al.  Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. , 2000, Biochemical and biophysical research communications.

[95]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[96]  M. Oka,et al.  Structure and property of model peptides of proline/arginine-rich region in bactenecin 5. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[97]  P. Christen,et al.  The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK , 2009, International Journal of Peptide Research and Therapeutics.

[98]  R. Gennaro,et al.  Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. , 1992, European journal of biochemistry.

[99]  N. O'Leary,et al.  Genomic structure and transcriptional regulation of the penaeidin gene family from Litopenaeus vannamei. , 2006, Gene.

[100]  Katsumi Matsuzaki,et al.  Control of cell selectivity of antimicrobial peptides. , 2009, Biochimica et biophysica acta.

[101]  L. Otvos,et al.  Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. , 1996, European journal of biochemistry.

[102]  A. Weintraub,et al.  The Outer Membrane of Brucella ovisShows Increased Permeability to Hydrophobic Probes and Is More Susceptible to Cationic Peptides than Are the Outer Membranes of Mutant Rough Brucella abortus Strains , 1999, Infection and Immunity.

[103]  R. Lanot,et al.  Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. , 1994, The Biochemical journal.

[104]  M. Scocchi,et al.  Antimicrobial activity of two bactenecins against spirochetes , 1993, Infection and immunity.

[105]  S. Hoffner,et al.  In vitro activity of PR-39, a proline-arginine-rich peptide, against susceptible and multi-drug-resistant Mycobacterium tuberculosis. , 2001, The Journal of antimicrobial chemotherapy.

[106]  C. Ross,et al.  PR-39, a porcine antimicrobial peptide, inhibits apoptosis: involvement of caspase-3. , 2004, Developmental and comparative immunology.

[107]  James A. Mackintosh,et al.  Isolation from an Ant Myrmecia gulosa of Two Inducible O-Glycosylated Proline-rich Antibacterial Peptides* , 1998, The Journal of Biological Chemistry.

[108]  M. Benincasa,et al.  Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. , 2002, Current pharmaceutical design.