Shellable graphs and sequentially Cohen-Macaulay bipartite graphs

Associated to a simple undirected graph G is a simplicial complex @D"G whose faces correspond to the independent sets of G. We call a graph G shellable if @D"G is a shellable simplicial complex in the non-pure sense of Bjorner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we classify all the shellable bipartite graphs; they are precisely the sequentially Cohen-Macaulay bipartite graphs. We also give a recursive procedure to verify if a bipartite graph is shellable. Because shellable implies that the associated Stanley-Reisner ring is sequentially Cohen-Macaulay, our results complement and extend recent work on the problem of determining when the edge ideal of a graph is (sequentially) Cohen-Macaulay. We also give a new proof for a result of Faridi on the sequentially Cohen-Macaulayness of simplicial forests.

[1]  Sara Faridi,et al.  Simplicial trees are sequentially Cohen–Macaulay ☆ , 2003, math/0308264.

[2]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[3]  Christopher A. Francisco,et al.  Sequentially Cohen-Macaulay edge ideals , 2005, math/0511022.

[4]  B. Toft Colouring, stable sets and perfect graphs , 1996 .

[5]  Daniela Ferrarello,et al.  Cohen-Macaulay graphs arising from digraphs , 2007 .

[6]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  Rafael H. Villarreal,et al.  On the Ideal Theory of Graphs , 1994 .

[10]  Takayuki Hibi,et al.  Componentwise linear ideals , 1999, Nagoya Mathematical Journal.

[11]  G. Cornuéjols,et al.  Combinatorial optimization : packing and covering , 2001 .

[12]  Takayuki Hibi,et al.  Cohen-Macaulay chordal graphs , 2006, J. Comb. Theory, Ser. A.

[13]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[14]  Takayuki Hibi,et al.  Distributive Lattices, Bipartite Graphs and Alexander Duality , 2003 .

[15]  Ali Soleyman Jahan,et al.  Pretty clean monomial ideals and linear quotients , 2007, 0707.2914.

[16]  Takayuki Hibi,et al.  Dirac's theorem on chordal graphs and Alexander duality , 2004, Eur. J. Comb..

[17]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[18]  Takayuki Hibi,et al.  Standard graded vertex cover algebras, cycles and leaves , 2006 .

[19]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .

[20]  Adam Van Tuyl,et al.  Monomial ideals, edge ideals of hypergraphs, and their minimal graded free resolutions , 2006 .

[21]  Takayuki Hibi,et al.  The monomial ideal of a finite meet-semilattice , 2003 .

[22]  Rafael H. Villarreal,et al.  Cohen-macaulay graphs , 1990 .

[23]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[24]  Art M. Duval Algebraic Shifting and Sequentially Cohen-Macaulay Simplicial Complexes , 1996, Electron. J. Comb..

[25]  R. Stanley Combinatorics and commutative algebra , 1983 .

[26]  Huy Tài Hà,et al.  Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers , 2006 .

[27]  H. Priestley,et al.  Distributive Lattices , 2004 .

[28]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[29]  Rafael H. Villarreal Unmixed bipartite graphs , 2006 .

[30]  Monomial IdealsSerkan Ho Monomial Ideals , 2001 .

[31]  Huy Tài Hà,et al.  Whiskers and sequentially Cohen-Macaulay graphs , 2008, J. Comb. Theory, Ser. A.