Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren

[1]  Wiktor Szymanski,et al.  Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. , 2015, Chemical Society reviews.

[2]  H. Lusic,et al.  Photochemical DNA activation. , 2007, Organic letters.

[3]  J. Martínez‐Costas,et al.  A Light-Modulated Sequence-Specific DNA-Binding Peptide , 2000 .

[4]  H. Lusic,et al.  Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. , 2013, ACS chemical biology.

[5]  A. Deiters,et al.  Optically Triggered Immune Response through Photocaged Oligonucleotides. , 2015, Tetrahedron letters.

[6]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[7]  S. Friedman,et al.  Construction of a photoactivated insulin depot. , 2013, Angewandte Chemie.

[8]  M. Zimmermann,et al.  Ein zellpermeables und photospaltbares Reagens für die selektive intrazelluläre Protein‐Protein‐Dimerisierung , 2014 .

[9]  S. Leach,et al.  Cyclic caged morpholinos: conformationally gated probes of embryonic gene function. , 2012, Angewandte Chemie.

[10]  A. Deiters,et al.  DNA computation: a photochemically controlled AND gate. , 2012, Journal of the American Chemical Society.

[11]  Yang Yang,et al.  Photolabile-caged peptide-conjugated liposomes for siRNA delivery , 2015, Journal of drug targeting.

[12]  R. Dempski,et al.  A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. , 2015, Angewandte Chemie.

[13]  D. Trauner,et al.  Photoswitchable fatty acids enable optical control of TRPV1 , 2015, Nature Communications.

[14]  Laura Klewer,et al.  Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. , 2015, Current opinion in chemical biology.

[15]  C. Bennett,et al.  RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. , 2010, Annual review of pharmacology and toxicology.

[16]  S. Burdette,et al.  Photochemical tools for studying metal ion signaling and homeostasis. , 2012, Biochemistry.

[17]  Xudong Cao,et al.  Comparative analysis of photocaged RGDS peptides for cell patterning. , 2013, Journal of biomedical materials research. Part A.

[18]  D. Lawrence,et al.  Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. , 2008, Journal of the American Chemical Society.

[19]  K. Shokat,et al.  The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. , 2011, Annual review of biochemistry.

[20]  A. Heckel,et al.  Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. , 2005, Journal of the American Chemical Society.

[21]  A. Mokhir,et al.  RNA interference controlled by light of variable wavelength. , 2014, Angewandte Chemie.

[22]  Devin Strickland,et al.  Optical Control of Peroxisomal Trafficking , 2015, ACS synthetic biology.

[23]  E. Akkaya,et al.  Near-IR-triggered, remote-controlled release of metal ions: a novel strategy for caged ions. , 2014, Angewandte Chemie.

[24]  D. Lawrence,et al.  Cell-mediated assembly of phototherapeutics. , 2014, Angewandte Chemie.

[25]  T. Ohtsuki,et al.  Spatial regulation of specific gene expression through photoactivation of RNAi. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[26]  V. Malhotra,et al.  Golgi Membranes Remain Segregated from the Endoplasmic Reticulum during Mitosis in Mammalian Cells , 2004, Cell.

[27]  Itamar Willner,et al.  DNA switches: from principles to applications. , 2015, Angewandte Chemie.

[28]  B. Erlanger,et al.  Photochromic activators of the acetylcholine receptor. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Francois,et al.  DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes , 2015, Expert opinion on biological therapy.

[30]  H. Lusic,et al.  Light-triggered polymerase chain reaction. , 2008, Chemical communications.

[31]  A. Deiters,et al.  Spatiotemporal control of microRNA function using light-activated antagomirs. , 2012, Molecular bioSystems.

[32]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[33]  N. Devaraj,et al.  Fluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03150e Click here for additional data file. , 2017, Chemical science.

[34]  H. Overkleeft,et al.  Proteasome Inhibitors with Photocontrolled Activity , 2014, Chembiochem : a European journal of chemical biology.

[35]  C. Renner,et al.  Redox Potential of Azobenzene as an Amino Acid Residue in Peptides , 2007, Chembiochem : a European journal of chemical biology.

[36]  C. Kimmel,et al.  Promoting notochord fate and repressing muscle development in zebrafish axial mesoderm. , 1998, Development.

[37]  Photosensitizing carrier proteins for photoinducible RNA interference. , 2011, Bioconjugate chemistry.

[38]  T. Ohtsuki,et al.  Photoinduced RNA interference. , 2012, Accounts of chemical research.

[39]  Yi-Tao Yu,et al.  Inducing nonsense suppression by targeted pseudouridylation , 2012, Nature Protocols.

[40]  M. Baaden,et al.  Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One‐ and Two‐Photon Illumination , 2010, Chembiochem : a European journal of chemical biology.

[41]  Carsten Schultz,et al.  Protein translocation as a tool: The current rapamycin story , 2012, FEBS letters.

[42]  Fu-Sen Liang,et al.  Light Control of Cellular Processes by Using Photocaged Abscisic Acid , 2015, Chembiochem : a European journal of chemical biology.

[43]  M. Kazanietz,et al.  C1 domains exposed: from diacylglycerol binding to protein-protein interactions. , 2006, Biochimica et biophysica acta.

[44]  N. Gagey-Eilstein,et al.  A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. , 2013, ACS chemical biology.

[45]  W. Lubitz,et al.  A caged substrate peptide for matrix metalloproteinases , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[46]  Ehud Y. Isacoff,et al.  Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling , 2012, Neuron.

[47]  M. Fukuda,et al.  Photochemical generation of oligodeoxynucleotide containing a C4'-oxidized abasic site and its efficient amine modification: dependence on structure and microenvironment. , 2008, The Journal of organic chemistry.

[48]  Murat Cirit,et al.  Systematic Quantification of Negative Feedback Mechanisms in the Extracellular Signal-regulated Kinase (erk) Signaling Network * □ S Experimental Procedures Data-driven Modeling of Feedback Regulating Erk Signaling Data-driven Modeling of Feedback Regulating Erk Signaling Data-driven Modeling of Fee , 2022 .

[49]  B. Cui,et al.  Optogenetic control of intracellular signaling pathways. , 2015, Trends in biotechnology.

[50]  A. Heckel,et al.  Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency , 2009, Nucleic acids research.

[51]  Michael E. Hahn,et al.  Manipulating proteins with chemistry: a cross-section of chemical biology. , 2005, Trends in biochemical sciences.

[52]  Q. Guo,et al.  Photoregulation of thrombin aptamer activity using Bhc caging strategy. , 2009, Bioorganic & medicinal chemistry letters.

[53]  Kevan M Shokat,et al.  Features of selective kinase inhibitors. , 2005, Chemistry & biology.

[54]  H. Ball,et al.  Manipulating Cell Migration and Proliferation with a Light‐Activated Polypeptide , 2009, Chembiochem : a European journal of chemical biology.

[55]  C. O’Sullivan,et al.  Sensitive detection of cancer cells using light-mediated apta-PCR. , 2016, Methods.

[56]  Wiktor Szymanski,et al.  Recent developments in reversible photoregulation of oligonucleotide structure and function. , 2017, Chemical Society reviews.

[57]  D. Lawrence,et al.  Construction of a photoactivatable profluorescent enzyme via propinquity labeling. , 2011, Journal of the American Chemical Society.

[58]  Walter Kolch,et al.  Functional proteomics to dissect tyrosine kinase signalling pathways in cancer , 2010, Nature Reviews Cancer.

[59]  D. Lawrence,et al.  Dual wavelength photoactivation of cAMP- and cGMP-dependent protein kinase signaling pathways. , 2011, ACS chemical biology.

[60]  S. Balasubramanian,et al.  Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes , 2016, Journal of the American Chemical Society.

[61]  B. Feringa,et al.  Light-Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy. , 2015, Chemistry.

[62]  A. MacMillan,et al.  Separation of Spliceosome Assembly from Catalysis with Caged pre-mRNA Substrates. , 2001, Angewandte Chemie.

[63]  D. Tautz,et al.  Chromophore-assisted laser inactivation of even skipped in Drosophila precisely phenocopies genetic loss of function , 1996, Development Genes and Evolution.

[64]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[65]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[66]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[67]  B. Feringa,et al.  Orthogonal photoswitching in a multifunctional molecular system , 2016, Nature Communications.

[68]  Q. Guo,et al.  New quinoline-based caging groups synthesized for photo-regulation of aptamer activity , 2010 .

[69]  Günter Mayer,et al.  Functional detection of proteins by caged aptamers. , 2012, ACS chemical biology.

[70]  Andrew A. Beharry,et al.  Azobenzene photoswitching without ultraviolet light. , 2011, Journal of the American Chemical Society.

[71]  Juan A. González-Vera,et al.  Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases , 2015, Proteomes.

[72]  P. Glazer,et al.  Triplex-mediated gene modification. , 2008, Methods in molecular biology.

[73]  A. Miyawaki,et al.  Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. , 2011, ACS chemical biology.

[74]  Gáspár Jékely,et al.  Site-Directed RNA Editing in Vivo Can Be Triggered by the Light-Driven Assembly of an Artificial Riboprotein , 2015, Journal of the American Chemical Society.

[75]  Jun Noguchi,et al.  GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling , 2013, Nature Neuroscience.

[76]  D. Hilvert,et al.  Modulating PNA/DNA hybridization by light. , 2010, Angewandte Chemie.

[77]  D. Harki,et al.  Catch and Release DNA Decoys: Capture and Photochemical Dissociation of NF-κB Transcription Factors. , 2016, ACS chemical biology.

[78]  G. Mayer,et al.  Biologisch aktive Moleküle mit “Lichtschalter” , 2006 .

[79]  James K. Chen,et al.  Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. , 2014, Angewandte Chemie.

[80]  James K. Chen,et al.  Spatiotemporal control of embryonic gene expression using caged morpholinos. , 2011, Methods in cell biology.

[81]  Alexander Deiters,et al.  Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. , 2012, Journal of the American Chemical Society.

[82]  Sachihiro Matsunaga,et al.  Chromophore-assisted laser inactivation – towards a spatiotemporal–functional analysis of proteins, and the ablation of chromatin, organelle and cell function , 2014, Journal of Cell Science.

[83]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[84]  G. Rutter,et al.  Optical control of insulin release using a photoswitchable sulfonylurea , 2014, Nature Communications.

[85]  M. Yamada,et al.  Photocontrol of kinesin ATPase activity using an azobenzene derivative. , 2007, Journal of biochemistry.

[86]  K. Wakabayashi,et al.  Incorporation of an azobenzene derivative into the energy transducing site of skeletal muscle myosin results in photo-induced conformational changes. , 2004, Journal of biochemistry.

[87]  David S Lawrence,et al.  Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. , 2009, ACS chemical biology.

[88]  Charles A. Gersbach,et al.  Light-Inducible Spatiotemporal Control of Gene Activation by Customizable Zinc Finger Transcription Factors , 2012, Journal of the American Chemical Society.

[89]  K. B. Joshi,et al.  Light-activatable molecular beacons with a caged loop sequence. , 2012, Chemical communications.

[90]  A. Deiters,et al.  Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. , 2009, ACS chemical biology.

[91]  A. Zarrine-Afsar,et al.  Structure-based approach to the photocontrol of protein folding. , 2009, Journal of the American Chemical Society.

[92]  Aklank Jain,et al.  Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells. , 2010, Biochimie.

[93]  G. Ellis‐Davies,et al.  Optically selective two-photon uncaging of glutamate at 900 nm. , 2013, Journal of the American Chemical Society.

[94]  M. Komiyama,et al.  Site‐Selective Blocking of PCR by a Caged Nucleotide Leading to Direct Creation of Desired Sticky Ends in The Products , 2008, Chembiochem : a European journal of chemical biology.

[95]  M. Čemažar,et al.  Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging , 2010, Molecular Imaging and Biology.

[96]  S. Zakian,et al.  TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery , 2014, Acta naturae.

[97]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[98]  R. Juliano,et al.  Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. , 2015, Journal of the American Chemical Society.

[99]  Xingguo Liang,et al.  A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. , 2010, Angewandte Chemie.

[100]  JohnB . Taylor,et al.  DESIGN AND SYNTHESIS OF A VERSATILE PHOTOCLEAVABLE DNA BUILDING BLOCK. APPLICATION TO PHOTOTRIGGERED HYBRIDIZATION , 1995 .

[101]  A. Gottschalk,et al.  AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks. , 2015, ACS chemical neuroscience.

[102]  Takanari Inoue,et al.  Following Optogenetic Dimerizers and Quantitative Prospects. , 2016, Biophysical journal.

[103]  D. Trauner,et al.  The in vivo chemistry of photoswitched tethered ligands. , 2014, Current opinion in chemical biology.

[104]  J. Doudna,et al.  Expanding the Biologist's Toolkit with CRISPR-Cas9. , 2015, Molecular cell.

[105]  Andreas Krämer,et al.  Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. , 2017, ACS infectious diseases.

[106]  Mark J. Miller,et al.  Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node , 2002, Science.

[107]  Jennifer R. Shell,et al.  Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas. , 2014, Angewandte Chemie.

[108]  T. Smart,et al.  Azogabazine; a photochromic antagonist of the GABAA receptor. , 2016, Organic & biomolecular chemistry.

[109]  G. Ellis‐Davies,et al.  Calcium Uncaging with Visible Light. , 2016, Journal of the American Chemical Society.

[110]  Chaoran Jing,et al.  Chemical tags for labeling proteins inside living cells. , 2011, Accounts of chemical research.

[111]  D. Raines,et al.  Azo-propofols: photochromic potentiators of GABA(A) receptors. , 2012, Angewandte Chemie.

[112]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[113]  I. Mérida,et al.  Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. , 2011, Trends in biochemical sciences.

[114]  P. Schultz,et al.  The incorporation of a photoisomerizable amino acid into proteins in E. coli. , 2006, Journal of the American Chemical Society.

[115]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[116]  R. Mahato,et al.  Targeted TFO delivery to hepatic stellate cells. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[117]  Y. Wang,et al.  Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells , 2012, Nucleic acids research.

[118]  O. Hobert,et al.  Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs. , 2011, ACS chemical biology.

[119]  J. Ellenberg,et al.  Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. , 2009, ACS chemical biology.

[120]  K. Hahn,et al.  Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. , 2011, Journal of the American Chemical Society.

[121]  K. Kawakami,et al.  Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. , 2010, Zebrafish.

[122]  Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. , 2015, Angewandte Chemie.

[123]  Christopher A. Voigt,et al.  The promise of optogenetics in cell biology: interrogating molecular circuits in space and time , 2011, Nature Methods.

[124]  M. Allende,et al.  Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. , 1996, Development.

[125]  J. Chin,et al.  Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells , 2011, Journal of the American Chemical Society.

[126]  James K. Chen,et al.  Synthetic strategies for studying embryonic development. , 2010, Chemistry & biology.

[127]  A. Deiters,et al.  Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. , 2014, Accounts of chemical research.

[128]  H. Asanuma,et al.  Photoswitch nucleic acid catalytic activity by regulating topological structure with a universal supraphotoswitch. , 2013, ACS synthetic biology.

[129]  J. T. Lightfoot,et al.  Vivo-Morpholinos Induced Transient Knockdown of Physical Activity Related Proteins , 2013, PloS one.

[130]  Yang Yang,et al.  A photo-responsive peptide- and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system , 2016, Drug delivery.

[131]  J. Eisen,et al.  Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish , 2012, Development.

[132]  P. Neveu,et al.  A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. , 2008, Angewandte Chemie.

[133]  D. Trauner,et al.  Development of a new photochromic ion channel blocker via azologization of fomocaine. , 2014, ACS chemical neuroscience.

[134]  A. Heckel,et al.  Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging. , 2016, Angewandte Chemie.

[135]  I. Dmochowski,et al.  Caged oligonucleotides for studying biological systems. , 2015, Journal of inorganic biochemistry.

[136]  A. Deiters,et al.  Photocaged T7 RNA Polymerase for the Light Activation of Transcription and Gene Function in Pro‐ and Eukaryotic Cells , 2010, Chembiochem : a European journal of chemical biology.

[137]  B. White,et al.  Chemically controlled protein assembly: techniques and applications. , 2010, Chemical reviews.

[138]  S. Manley,et al.  A caged, localizable rhodamine derivative for superresolution microscopy. , 2012, ACS chemical biology.

[139]  J. Chin,et al.  Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells , 2014, Journal of the American Chemical Society.

[140]  J. Alexander,et al.  Targeting Expression with Light Using Caged DNA* , 1999, The Journal of Biological Chemistry.

[141]  Joseph P Noel,et al.  Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. , 2014, Angewandte Chemie.

[142]  A. Heckel,et al.  Photo-Tethers for the (Multi-)Cyclic, Conformational Caging of Long Oligonucleotides. , 2017, Angewandte Chemie.

[143]  M. Lampson,et al.  Localized light-induced protein dimerization in living cells using a photocaged dimerizer , 2014, Nature Communications.

[144]  Hong Liu,et al.  Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery , 2016, Drug delivery.

[145]  C. Gersbach,et al.  A light-inducible CRISPR/Cas9 system for control of endogenous gene activation , 2015, Nature chemical biology.

[146]  John A Wolf,et al.  Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue , 2014, Nature Methods.

[147]  Hiroyuki Nakamura,et al.  Regulation of target protein knockdown and labeling using ligand-directed Ru(bpy)3 photocatalyst. , 2015, Bioconjugate chemistry.

[148]  R. Givens,et al.  Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy , 2012, Chemical reviews.

[149]  M. Yazawa,et al.  A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. , 2016, Nature chemical biology.

[150]  Xinjing Tang,et al.  Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. , 2016, Angewandte Chemie.

[151]  Alexander Deiters,et al.  Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation , 2014, Journal of the American Chemical Society.

[152]  V. Kadambi,et al.  Antibody drug conjugates - Trojan horses in the war on cancer. , 2011, Journal of pharmacological and toxicological methods.

[153]  David S Lawrence,et al.  An Integrated Chemical Cytometry Method: Shining a Light on Akt Activity in Single Cells. , 2016, Angewandte Chemie.

[154]  A. Tong,et al.  Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme. , 2016, ACS chemical biology.

[155]  André Nadler,et al.  The fatty acid composition of diacylglycerols determines local signaling patterns. , 2013, Angewandte Chemie.

[156]  Carsten Schultz,et al.  Die Fettsäurezusammensetzung von Diacylglycerinen bestimmt lokale Signalmuster , 2013 .

[157]  Kathryn L Haas,et al.  A Photo-Caged Platinum(II) Complex That Increases Cytotoxicity upon Light Activation , 2010 .

[158]  Samit Shah,et al.  Light-activated RNA interference. , 2005, Angewandte Chemie.

[159]  Katryn R. Harwood,et al.  Leveraging a Small‐Molecule Modification to Enable the Photoactivation of Rho GTPases , 2009, Chembiochem : a European journal of chemical biology.

[160]  A. Prasad,et al.  Nucleic acid therapeutics: basic concepts and recent developments , 2014 .

[161]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[162]  A. Wojtovich,et al.  Optogenetic control of ROS production , 2014, Redox biology.

[163]  Control of Cellular Function by Reversible Photoregulation of Translation , 2014, Chembiochem : a European journal of chemical biology.

[164]  Yang Yang,et al.  Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. , 2015, Biomaterials.

[165]  David Griffiths,et al.  Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission , 2013, PLoS Comput. Biol..

[166]  D. Sahlender,et al.  Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria , 2010, Developmental cell.

[167]  Cuichen Wu,et al.  A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. , 2013, Journal of the American Chemical Society.

[168]  Maurice Goeldner,et al.  Phototriggering of cell adhesion by caged cyclic RGD peptides. , 2008, Angewandte Chemie.

[169]  B. Feringa,et al.  Ciprofloxacin-Photoswitch Conjugates: A Facile Strategy for Photopharmacology. , 2015, Bioconjugate chemistry.

[170]  Roger Y. Tsien,et al.  Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos , 2001, Nature Genetics.

[171]  A. Gewirtz,et al.  Regulating gene expression in human leukemia cells using light-activated oligodeoxynucleotides , 2007, Nucleic acids research.

[172]  R. Wombacher,et al.  Light-induced protein dimerization by one- and two-photon activation of gibberellic acid derivatives in living cells. , 2015, Angewandte Chemie.

[173]  B. Spengler,et al.  Controlling the enzymatic activity of a restriction enzyme by light , 2009, Proceedings of the National Academy of Sciences.

[174]  A. Schuler,et al.  PhotoMorphs™: A novel light‐activated reagent for controlling gene expression in zebrafish , 2009, Genesis.

[175]  U. Diederichsen,et al.  Nucleobase‐caged peptide nucleic acids: PNA/PNA duplex destabilization and light‐triggered PNA/PNA recognition , 2013, Journal of peptide science : an official publication of the European Peptide Society.

[176]  Carsten Schultz,et al.  Photoswitchable diacylglycerols enable optical control of protein kinase C. , 2016, Nature chemical biology.

[177]  H. Asanuma,et al.  p-Stilbazole moieties as artificial base pairs for photo-cross-linking of DNA duplex. , 2013, Journal of the American Chemical Society.

[178]  A. Heckel,et al.  Light-dependent RNA interference with nucleobase-caged siRNAs. , 2007, RNA.

[179]  Kristi S Anseth,et al.  Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. , 2013, Angewandte Chemie.

[180]  D. Lawrence,et al.  Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents. , 2015, Accounts of chemical research.

[181]  Surajit Sinha,et al.  Light-controlled gene silencing in zebrafish embryos. , 2007, Nature chemical biology.

[182]  A. Deiters,et al.  Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches. , 2014, ACS chemical biology.

[183]  T. Kodadek,et al.  Potent and Selective Photo-inactivation of Proteins With Peptoid-Ruthenium Conjugates , 2010, Nature chemical biology.

[184]  H. Lusic,et al.  Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. , 2010, Journal of the American Chemical Society.

[185]  B. Feringa,et al.  Optical control of antibacterial activity. , 2013, Nature chemistry.

[186]  N. Dokholyan,et al.  Light-cleavable Rapamycin Dimer as an Optical Trigger for Protein Dimerization † Chemcomm Communication , 2022 .

[187]  Y. Hori,et al.  Photocontrolled compound release system using caged antimicrobial peptide. , 2010, Journal of the American Chemical Society.

[188]  Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ = 800 nm. , 2012, Angewandte Chemie.

[189]  Ludovic Jullien,et al.  How to control proteins with light in living systems. , 2014, Nature chemical biology.

[190]  Andrew V. Anzalone,et al.  Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging. , 2016, Chemical communications.

[191]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[192]  H. Lusic,et al.  Gene Silencing in Mammalian Cells with Light‐Activated Antisense Agents , 2008, Chembiochem : a European journal of chemical biology.

[193]  Itamar Willner,et al.  DNA-Schalter: Grundlagen und Anwendungen , 2015 .

[194]  Jianmin Wu,et al.  The kinome 'at large' in cancer , 2016, Nature Reviews Cancer.

[195]  Robert DeRose,et al.  Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology , 2013, Pflügers Archiv - European Journal of Physiology.

[196]  Yuta Nihongaki,et al.  Photoactivatable CRISPR-Cas9 for optogenetic genome editing , 2015, Nature Biotechnology.

[197]  Shigeki Iwanaga,et al.  Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. , 2010, Journal of the American Chemical Society.

[198]  B. Imperiali,et al.  Caged mono- and divalent ligands for light-assisted disruption of PDZ domain-mediated interactions. , 2013, Journal of the American Chemical Society.

[199]  H. Asanuma,et al.  Visible-Light-Triggered Cross-Linking of DNA Duplexes by Reversible [2+2] Photocycloaddition of Styrylpyrene. , 2016, Chemistry.

[200]  Pradeep Kota,et al.  Engineered allosteric activation of kinases in living cells , 2010, Nature Biotechnology.

[201]  T. Ohtsuki,et al.  Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. , 2008, Bioconjugate chemistry.

[202]  Alexander Prokup,et al.  Optically Controlled Signal Amplification for DNA Computation. , 2015, ACS synthetic biology.

[203]  Dirk Trauner,et al.  Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand , 2015, ACS central science.

[204]  Moritoshi Sato,et al.  CRISPR-Cas9-based photoactivatable transcription system. , 2015, Chemistry & biology.

[205]  D. Neri,et al.  Antibody-drug conjugates: basic concepts, examples and future perspectives. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[206]  Brian Kuhlman,et al.  Light-induced nuclear export reveals rapid dynamics of epigenetic modifications , 2016, Nature chemical biology.

[207]  A. Deiters,et al.  Optical Control of DNA Helicase Function through Genetic Code Expansion , 2017, Chembiochem : a European journal of chemical biology.

[208]  R. Hesketh,et al.  Targeting tumour vasculature: the development of combretastatin A4. , 2001, The Lancet. Oncology.

[209]  John J Rossi,et al.  RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? , 2016, Annual review of pharmacology and toxicology.

[210]  Sylvie Maurin,et al.  Coumarinylmethyl caging groups with redshifted absorption. , 2013, Chemistry.

[211]  Synthesis of FMRFaNV, a Photoreleasable Caged Transmitter Designed to Study Neuron-Glia Interactions in the Central Nervous System. , 2015, Bioconjugate chemistry.

[212]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[213]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[214]  H. Lusic,et al.  Optochemical control of RNA interference in mammalian cells , 2013, Nucleic acids research.

[215]  E. Isacoff,et al.  Photoswitching of cell surface receptors using tethered ligands. , 2014, Methods in molecular biology.

[216]  Wen-hong Li,et al.  Photoactivatable fluorophores and techniques for biological imaging applications , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[217]  C. Turro,et al.  Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. , 2013, Journal of the American Chemical Society.

[218]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[219]  Eric A. Vitriol,et al.  Chromophore-assisted laser inactivation in cell biology. , 2008, Trends in cell biology.

[220]  Shinzi Ogasawara Duration Control of Protein Expression in Vivo by Light-Mediated Reversible Activation of Translation. , 2017, ACS chemical biology.

[221]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[222]  Andrew J. Olson,et al.  Versatile Synthesis and Rational Design of Caged Morpholinos , 2009, Journal of the American Chemical Society.

[223]  A. Mokhir,et al.  'Caged' peptide nucleic acids activated by red light in a singlet oxygen mediated process. , 2013, Bioorganic & medicinal chemistry letters.

[224]  Gaudenz Danuser,et al.  Manipulation of Endogenous Kinase Activity in Living Cells Using Photoswitchable Inhibitory Peptides , 2014, ACS synthetic biology.

[225]  W. Tan,et al.  Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe , 2009, Proceedings of the National Academy of Sciences.

[226]  G. Ellis‐Davies,et al.  Photolabile chelators for the rapid photorelease of divalent cations. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[227]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[228]  I. Dmochowski,et al.  Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. , 2013, Bioorganic & medicinal chemistry.

[229]  P. Gorostiza,et al.  An allosteric modulator to control endogenous G protein-coupled receptors with light. , 2014, Nature chemical biology.

[230]  Xingshi Cai,et al.  A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. , 2015, Colloids and surfaces. B, Biointerfaces.

[231]  Simon H. Friedman,et al.  Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot , 2016, Molecular pharmaceutics.

[232]  Lalintip Hocharoen,et al.  Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. , 2012, Journal of the American Chemical Society.

[233]  D. Lawrence,et al.  The Plasma Membrane as a Reservoir, Protective Shield, and Light-Triggered Launch Pad for Peptide Therapeutics. , 2016, Angewandte Chemie.

[234]  J. A. Hendricks,et al.  Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes , 2016, Nature chemical biology.

[235]  Jasmin Wagner,et al.  Regulation der Angiogenese durch lichtinduzierbare AntimiRs , 2013 .

[236]  B. Williams,et al.  Light controllable siRNAs regulate gene suppression and phenotypes in cells. , 2006, Biochimica et biophysica acta.

[237]  Alexander Deiters,et al.  Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. , 2012, ACS chemical biology.

[238]  G. Ellis‐Davies,et al.  The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells , 2005, Nature Methods.

[239]  Alexander Deiters,et al.  DNA computation in mammalian cells: microRNA logic operations. , 2013, Journal of the American Chemical Society.

[240]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[241]  Thorsten Stafforst,et al.  Photokontrolle der PNA‐DNA‐Hybridisierung , 2010 .

[242]  Fangli Zhao,et al.  ortho-Fluoroazobenzenes: visible light switches with very long-Lived Z isomers. , 2014, Chemistry.

[243]  J. Chin,et al.  Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells , 2017, Nature Structural & Molecular Biology.

[244]  Whitney J. Walker,et al.  Tbx16 regulates hox gene activation in mesodermal progenitor cells , 2016, Nature chemical biology.

[245]  James K. Chen,et al.  Nitroreductase-Activatable Morpholino Oligonucleotides for in Vivo Gene Silencing , 2014, ACS chemical biology.

[246]  Samit Shah,et al.  Tolerance of RNA interference toward modifications of the 5' antisense phosphate of small interfering RNA. , 2007, Oligonucleotides.

[247]  Hui-wang Ai,et al.  Light activation of protein splicing with a photocaged fast intein. , 2015, Journal of the American Chemical Society.

[248]  A. Deiters,et al.  Control of oncogenic miRNA function by light-activated miRNA antagomirs. , 2014, Methods in molecular biology.

[249]  N. Allbritton,et al.  Measurement of Protein Kinase B Activity in Single Primary Human Pancreatic Cancer Cells , 2014, Analytical chemistry.

[250]  Xingguo Liang,et al.  Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. , 2010, Chemistry.

[251]  S. Zahler,et al.  Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death , 2015, Cell.

[252]  F. Imamura,et al.  Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. , 1993, Biochemical and biophysical research communications.

[253]  A. Mokhir,et al.  1,9-Dialkoxyanthracene as a (1)O2-sensitive linker. , 2011, Journal of the American Chemical Society.

[254]  Yi Lu,et al.  Photocaged DNAzymes as a general method for sensing metal ions in living cells. , 2014, Angewandte Chemie.

[255]  Jasmin Wagner,et al.  Regulating angiogenesis with light-inducible AntimiRs. , 2013, Angewandte Chemie.

[256]  Thorsten Stafforst,et al.  Chemisch modifizierte guideRNAs verbessern die ortsgerichtete RNA‐Editierung in vitro und in Zellkultur , 2014 .

[257]  G. Ellis‐Davies,et al.  Spectral evolution of a photochemical protecting group for orthogonal two-color uncaging with visible light. , 2013, Journal of the American Chemical Society.

[258]  V. Hagen,et al.  Mechanism of photocleavage of (coumarin-4-yl)methyl esters. , 2007, The journal of physical chemistry. A.

[259]  K. Fujimoto,et al.  Photo-Cross-Linking Reaction in Nucleic Acids: Chemistry and Applications , 2016 .

[260]  F. Bonhoeffer,et al.  Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule , 1996, Current Biology.

[261]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[262]  Randall J. Platt,et al.  Therapeutic genome editing: prospects and challenges , 2015, Nature Medicine.

[263]  Corey W. Liu,et al.  Characterization of the FKBP.rapamycin.FRB ternary complex. , 2005, Journal of the American Chemical Society.

[264]  M. Iino,et al.  Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer , 2008, Proceedings of the National Academy of Sciences.

[265]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[266]  J. Iwahara,et al.  Regulation of transcription factors via natural decoys in genomic DNA , 2016, Transcription.

[267]  S. Burdette,et al.  Following the Ca²⁺ roadmap to photocaged complexes for Zn²⁺ and beyond. , 2013, Current opinion in chemical biology.

[268]  A. Deiters,et al.  Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. , 2011, Journal of the American Chemical Society.

[269]  Michael A. Lampson,et al.  Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization , 2015, Current Biology.

[270]  Xinjing Tang,et al.  Photomodulating RNA cleavage using photolabile circular antisense oligodeoxynucleotides , 2010, Nucleic acids research.

[271]  J. Chin,et al.  Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. , 2013, Journal of the American Chemical Society.

[272]  M. Engelhard,et al.  Photocontrol of STAT6 dimerization and translocation. , 2010, Molecular bioSystems.

[273]  C. Hoppmann,et al.  In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light. , 2015, Journal of the American Chemical Society.

[274]  Philipp Reautschnig,et al.  The notorious R.N.A. in the spotlight - drug or target for the treatment of disease , 2016, RNA biology.

[275]  T. Kodadek,et al.  Rapid Development of a Potent Photo‐triggered Inhibitor of the Serine Hydrolase RBBP9 , 2012, Chembiochem : a European journal of chemical biology.

[276]  Yi-Tao Yu,et al.  Targeted pre-mRNA modification for gene silencing and regulation , 2008, Nature Methods.

[277]  Mithun Biswas,et al.  Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside. , 2015, Chemistry.

[278]  G. Ellis‐Davies,et al.  Caged compounds for multichromic optical interrogation of neural systems , 2015, The European journal of neuroscience.

[279]  Piyush K Jain,et al.  Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. , 2016, Angewandte Chemie.

[280]  J. Heemstra,et al.  Temporal Control of Aptamer Biosensors Using Covalent Self-Caging To Shift Equilibrium. , 2016, Journal of the American Chemical Society.

[281]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[282]  T. Narumi,et al.  Synthetic Caged DAG‐lactones for Photochemically Controlled Activation of Protein Kinase C , 2011, Chembiochem : a European journal of chemical biology.

[283]  Weihong Tan,et al.  DNA branch migration reactions through photocontrollable toehold formation. , 2013, Journal of the American Chemical Society.

[284]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[285]  D. Toomre,et al.  A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes , 2009, Cell.

[286]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[287]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[288]  Hana Cahová,et al.  Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA. , 2013, Angewandte Chemie.

[289]  P. Senter Potent antibody drug conjugates for cancer therapy. , 2009, Current opinion in chemical biology.

[290]  Korwin M. Schelkle,et al.  Lichtinduzierte Proteindimerisierung in lebenden Zellen durch Ein- und Zweiphotonenaktivierung von Gibberellinsäurederivaten† , 2015 .

[291]  J. Chin,et al.  Genetically encoded optical activation of DNA recombination in human cells† †Electronic supplementary information (ESI) available: Experimental protocols. See DOI: 10.1039/c6cc03934k Click here for additional data file. , 2016, Chemical communications.

[292]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[293]  A. Deiters,et al.  Site-Specific Promoter Caging Enables Optochemical Gene Activation in Cells and Animals , 2014, Journal of the American Chemical Society.

[294]  H. Asanuma,et al.  Construction of photoresponsive RNA for photoswitching RNA hybridization. , 2010, Organic & biomolecular chemistry.

[295]  Ravi S Kane,et al.  At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. , 2017, Annual review of chemical and biomolecular engineering.

[296]  A. Heckel,et al.  Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature. , 2015, Chemistry.

[297]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[298]  Alexander Deiters,et al.  Optical Control of CRISPR/Cas9 Gene Editing. , 2015, Journal of the American Chemical Society.

[299]  I. Dmochowski,et al.  RNA bandages for photoregulating in vitro protein synthesis. , 2008, Bioorganic & medicinal chemistry letters.

[300]  Douglas D Young,et al.  Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. , 2010, Journal of the American Chemical Society.

[301]  Weihong Tan,et al.  Caged molecular beacons: controlling nucleic acid hybridization with light. , 2011, Chemical communications.

[302]  Shu Jia,et al.  Ultra-bright Photoactivatable Fluorophores Created by Reductive Caging , 2012, Nature Methods.

[303]  Taleen Jerjian,et al.  Antibody‐Drug Conjugates: A Clinical Pharmacy Perspective on an Emerging Cancer Therapy , 2016, Pharmacotherapy.

[304]  B. Imperiali,et al.  Sequential activation and deactivation of protein function using spectrally differentiated caged phosphoamino acids. , 2011, Journal of the American Chemical Society.

[305]  A. Heckel,et al.  Light-controlled tools. , 2012, Angewandte Chemie.

[306]  S. Hecht,et al.  o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. , 2012, Journal of the American Chemical Society.

[307]  R. Mart,et al.  Azobenzene photocontrol of peptides and proteins. , 2016, Chemical communications.

[308]  J. Eberwine,et al.  Ruthenium-caged antisense morpholinos for regulating gene expression in zebrafish embryos , 2015, Chemical science.

[309]  Paul Vogel,et al.  Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. , 2014, Angewandte Chemie.

[310]  I. Dmochowski,et al.  Turning the 10–23 DNAzyme On and Off with Light , 2010, Chembiochem : a European journal of chemical biology.

[311]  Günter Mayer,et al.  From selection to caged aptamers: identification of light-dependent ssDNA aptamers targeting cytohesin. , 2009, Bioorganic & medicinal chemistry letters.

[312]  Sagar D. Khare,et al.  Computational Design of a Photocontrolled Cytosine Deaminase. , 2018, Journal of the American Chemical Society.

[313]  K. Jalink,et al.  Optotaxis: Caged Lysophosphatidic Acid Enables Optical Control of a Chemotactic Gradient. , 2016, Cell chemical biology.

[314]  S. Mackem,et al.  A Near-IR Uncaging Strategy Based on Cyanine Photochemistry , 2014, Journal of the American Chemical Society.

[315]  Matthew Weitzman,et al.  Optogenetic approaches to cell migration and beyond. , 2014, Current opinion in cell biology.

[316]  T. Furuta,et al.  Synthesis of nucleobase-caged peptide nucleic acids having improved photochemical properties. , 2014, Organic & biomolecular chemistry.

[317]  Steven G. Chaulk,et al.  Caged RNA: photo-control of a ribozyme reaction , 1998, Nucleic Acids Res..

[318]  B. Feringa,et al.  Orthogonal control of antibacterial activity with light. , 2014, ACS chemical biology.

[319]  Hiroshi Suzuki,et al.  SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation , 2013, Scientific Reports.

[320]  Justin D. Vrana,et al.  Optogenetic control of cell function using engineered photoreceptors , 2013, Biology of the cell.

[321]  D. Burns,et al.  Kinetic characterization of ribonuclease S mutants containing photoisomerizable phenylazophenylalanine residues. , 2001, Protein engineering.

[322]  Takanari Inoue,et al.  A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. , 2011, Journal of the American Chemical Society.

[323]  Y. Zu,et al.  Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy , 2014, Molecular therapy. Nucleic acids.

[324]  M. Wymann,et al.  Cell-Permeant and Photocleavable Chemical Inducer of Dimerization** , 2014, Angewandte Chemie.

[325]  Dynamics of Inter-DNA Chain Interaction of Photoresponsive DNA. , 2016, Journal of the American Chemical Society.

[326]  Y. Wang,et al.  Manipulation of gene expression in zebrafish using caged circular morpholino oligomers , 2012, Nucleic acids research.

[327]  T. Ohtsuki,et al.  Photo inducible RNA interference using cell permeable protein carrier. , 2007, Nucleic acids symposium series.

[328]  C. Kirkpatrick,et al.  Photoactivatable Caged Cyclic RGD Peptide for Triggering Integrin Binding and Cell Adhesion to Surfaces , 2011, Chembiochem : a European journal of chemical biology.

[329]  Morgan L. Maeder,et al.  Genome-editing Technologies for Gene and Cell Therapy , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[330]  Hisataka Kobayashi,et al.  Near-IR Light-Mediated Cleavage of Antibody-Drug Conjugates Using Cyanine Photocages. , 2015, Angewandte Chemie.

[331]  J. Summerton,et al.  Morpholino antisense oligomers: design, preparation, and properties. , 1997, Antisense & nucleic acid drug development.

[332]  C. Alberini,et al.  Transcription factors in long-term memory and synaptic plasticity. , 2009, Physiological reviews.

[333]  David S Lawrence,et al.  The preparation and in vivo applications of caged peptides and proteins. , 2005, Current opinion in chemical biology.