GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study

We examine the properties of alternative GMM procedures for estimation of the lognormal stochastic autoregressive volatility model through a large scale Monte Carlo study. We demonstrate that there is a fundamental trade-off between the number of moments, or information, included in estimation and the quality, or precision, of the objective function used for estimation. We provide a fairly transparent characterization of the trade-off in the present model. Furthermore, a large sample approximation to the optimal weighting matrix is utilized to explore the impact of the weighting matrix for estimation, specification testing and inference procedures, and to obtain practical efficiency bounds for the given class of GMM estimators. The results provide guidelines for obtaining desirable finite sample properties through the choice of the appropriate estimation design, and although the findings are specific to the model, the conclusions are likely to apply to a wide range of settings characterized by strong conditional heteroskedasticity and correlation among the moments.

[1]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[2]  T. W. Epps,et al.  The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis , 1976 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[5]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .

[6]  H. White Asymptotic theory for econometricians , 1985 .

[7]  F. Diebold,et al.  The dynamics of exchange rate volatility: a multivariate latent factor ARCH model , 1986 .

[8]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[9]  George Tauchen,et al.  Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained From Financial Market Data , 1986 .

[10]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[11]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[12]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[13]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[14]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[15]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[16]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[17]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[18]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[19]  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[20]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[21]  A. Gallant,et al.  On Fitting A Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974- 83 , 1988 .

[22]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[23]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[24]  Narayana R. Kocherlakota,et al.  On tests of representative consumer asset pricing models , 1990 .

[25]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[26]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[27]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[28]  Dean P. Foster,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[29]  Dean P. Foster,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[30]  Daniel B. Nelson,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[31]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[32]  Filtering and Forecasting with Misspecified Arch Models II: Making the Right Forecast with the Wrong Model , 1992 .

[33]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[34]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[35]  Lilian Ng,et al.  The sources of GARCH: empirical evidence from an intraday returns model incorporating systematic and unique risks , 1993 .

[36]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[37]  Bayesian Analysis of Stochastic Volatility Models: Comment , 1994 .

[38]  Wayne E. Ferson,et al.  Finite sample properties of the generalized method of moments in tests of conditional asset pricing models , 1994 .

[39]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[40]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[41]  Modelling Exchange Rates in Continuous Time: Theory, Estimation and Option Pricing , 1994 .

[42]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[43]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models: Comments: Reply , 1994 .

[44]  Jón Dańıelsson Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .

[45]  Joseph G. Altonji,et al.  Small Sample Bias in GMM Estimation of Covariance Structures , 1994 .

[46]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[47]  M. Eichenbaum,et al.  Small Sample Properties of Generalized Method of Moments Based Wald Tests , 1994 .

[48]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[49]  T. Andersen Stochastic Autoregressive Volatility: A Framework for Volatility Modeling , 1994 .

[50]  Lawrence J. Christiano,et al.  Small Sample Properties of GMM for Business Cycle Analysis , 1995 .

[51]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[52]  F. Foster,et al.  Can Speculative Trading Explain the Volume–Volatility Relation? , 1995 .

[53]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[54]  Bent E. Sørensen,et al.  A Continuous-Time Arbitrage-Pricing Model With Stochastic Volatility and Jumps , 1996 .

[55]  A. Harvey,et al.  5 Stochastic volatility , 1996 .