Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data

Climate variability and global change studies are increasingly focused on understanding and predicting regional changes of daily weather statistics. Assessing the evidence for such variations over the last 100 yr requires a daily tropospheric circulation dataset. The only dataset available for the early twentieth century consists of error-ridden hand-drawn analyses of the mean sea level pressure field over the Northern Hemisphere. Modern data assimilation systems have the potential to improve upon these maps, but prior to 1948, few digitized upper-air sounding observations are available for such a “reanalysis.” We investigate the possibility that the additional number of newly recovered surface pressure observations is sufficient to generate useful weather maps of the lower-tropospheric extratropical circulation back to 1890 over the Northern Hemisphere, and back to 1930 over the Southern Hemisphere. Surprisingly, we find that by using an advanced data assimilation system based on an ensemble Kalman filte...

[1]  K. Trenberth,et al.  The Northern Hemisphere Sea-Level Pressure Data Set: Trends, Errors and Discontinuities , 1980 .

[2]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .

[3]  T. Manabe The Digitized Kobe Collection, Phase I: Historical Surface Marine Meteorological Observations in the Archive of the Japan Meteorological Agency , 1999 .

[4]  Balaji Rajagopalan,et al.  Analyses of global sea surface temperature 1856–1991 , 1998 .

[5]  Using Mean Flow Change as a Proxy to Infer Interdecadal Storm Track Variability. , 2003 .

[6]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[7]  Ricardo Todling,et al.  A fixed-lag Kalman smoother for retrospective data assimilation , 1994 .

[8]  Boris Katz,et al.  Recent Changes Implemented into the Global Forecast System at NMC , 1991 .

[9]  Lennart Bengtsson On the use of a time sequence of surface pressures in four-dimensional data assimilation , 1980 .

[10]  R. Allan,et al.  A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004 , 2006 .

[11]  Steven J. Worley,et al.  COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields , 1998 .

[12]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[13]  Manola Brunet,et al.  Daily Mean Sea Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–2003 , 2006 .

[14]  C. C. Lautenbacher,et al.  The global earth observation system of systems (GEOSS) , 2005, 2005 IEEE International Symposium on Mass Storage Systems and Technology.

[15]  S. Hagemann,et al.  Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations , 2004 .

[16]  Canadian pressure observations and circulation variability: links to air temperature , 2005 .

[17]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[18]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[19]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[20]  P. Jones The early twentieth century Arctic high — fact or fiction? , 1987 .

[21]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[22]  A. Hollingsworth,et al.  Some aspects of the improvement in skill of numerical weather prediction , 2002 .

[23]  Timothy J. Hoar,et al.  Assimilation of Surface Pressure Observations Using an Ensemble Filter in an Idealized Global Atmospheric Prediction System , 2005 .

[24]  Lars Peter Riishojgaard,et al.  A direct way of specifying flow‐dependent background error correlations for meteorological analysis systems , 1998 .

[25]  M. Buehner Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting , 2005 .

[26]  Heikki Järvinen,et al.  Variational assimilation of time sequences of surface observations with serially correlated errors , 1999 .

[27]  J. Kinter,et al.  An Evaluation of the Apparent Interdecadal Shift in the Tropical Divergent Circulation in the NCEP–NCAR Reanalysis , 2004 .

[28]  B. Hoskins,et al.  A Comparison of Recent Reanalysis Datasets Using Objective Feature Tracking: Storm Tracks and Tropical Easterly Waves , 2003 .

[29]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[30]  Elizabeth C. Kent,et al.  Quantifying random measurement errors in Voluntary Observing Ships' meteorological observations , 2005 .

[31]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[32]  Nedjeljka Žagar,et al.  Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short‐range forecast errors , 2005 .

[33]  Steven J. Worley,et al.  ICOADS release 2.1 data and products , 2005 .

[34]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[35]  N. Harnik,et al.  Storm Track Variations As Seen in Radiosonde Observations and Reanalysis Data , 2003 .

[36]  John H. Marburger,et al.  Strategic Plan for the U.S. Climate Change Science Program , 2003 .

[37]  M. Chelliah,et al.  Comparison of Tropospheric Temperatures Derived from the NCEP/NCAR Reanalysis, NCEP Operational Analysis, and the Microwave Sounding Unit , 1997 .

[38]  M. Newman,et al.  An Assessment of the NCEP, NASA, and ECMWF Reanalyses over the Tropical West Pacific Warm Pool , 2000 .

[39]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[40]  Jeffrey S. Whitaker,et al.  A Study of Subseasonal Predictability , 2003 .

[41]  Thomas M. Smith,et al.  Reconstruction of Monthly Mean Oceanic Sea Level Pressure Based on COADS and Station Data (1854–1997) , 2004 .

[42]  Thomas M. Smith,et al.  Improved Extended Reconstruction of SST (1854–1997) , 2004 .

[43]  Satoshi Sugimoto,et al.  Objective analyses of sea‐surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection , 2005 .

[44]  Lennart Bengtsson,et al.  Integration of Space and In Situ Observations to Study Global Climate Change , 1988 .

[45]  New approaches for extending the twentieth century climate record , 2005 .

[46]  Bob Glahn,et al.  Reforecasts: An Important Dataset for Improving Weather Predictions , 2008 .

[47]  R. Reynolds,et al.  Early Ship Observational Data and Icoads , 2005 .

[48]  S. Hagemann,et al.  Can climate trends be calculated from reanalysis data , 2004 .

[49]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[50]  Russell S. Vose,et al.  The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data , 1992 .

[51]  N. Roberts,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances , 2003 .

[52]  The Role of Sea Surface Temperature in Reanalysis , 2006 .

[53]  Kevin E. Trenberth,et al.  The Mass of the Atmosphere: A Constraint on Global Analyses , 2005 .

[54]  Harry H. Hendon,et al.  Medium-Range Forecast Errors Associated with Active Episodes of theMadden–Julian Oscillation , 2000 .

[55]  J. Wahr,et al.  Can surface pressure be used to remove atmospheric , 2001 .

[56]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[57]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[58]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[59]  H. Loon,et al.  An Examination of the Northern Hemisphere Sea-Level Pressure Data Set , 1976 .

[60]  M. Cane,et al.  Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854–1992* , 2000 .