Development of planetary ephemerides EPM and their applications

This paper outlines the progress in development of the numerical planet ephemerides EPM—Ephemerides of Planets and the Moon. EPM was first created in the 1970s in support of Russian space flight missions and constantly improved at IAA RAS. Comparison between various available EPM ephemerides (EPM2004, EPM2008, EPM2011) is shown. The first results of the updated EPM2013 version which takes into account the two-dimensional annulus of small asteroids are presented. Currently two main factors drive the progress of planet ephemerides: dynamical models of planet motion and observational data, with the crucial role of spacecraft ranging. EPM ephemerides are the basis for the Russian Astronomical and Nautical Astronomical Yearbooks, are planned to use in the GLONASS and LUNA-RESOURCE programs, and are being used for determination of physical parameters: masses of asteroids, planet rotation parameters and topography, the $$GM_\odot $$GM⊙ and its secular variation, the PPN parameters, and the upper limit on the mass of dark matter in the Solar System. The files containing polynomial approximation for EPM ephemerides (EPM2004, EPM2008, EPM2011) along with TT–TDB and ephemerides of Ceres, Pallas, Vesta, Eris, Haumea, Makemake, and Sedna are available from ftp://quasar.ipa.nw.ru/incoming/EPM/. Files are provided in IAA’s binary and ASCII formats, as well as in the SPK format.

[1]  V. E. Panfilov,et al.  EPM Ephemerides of Planets and the Moon of IAA RAS: their model, accuracy, availability , 2011 .

[2]  E. Pitjeva,et al.  Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft , 2013, 1306.3043.

[3]  E. Standish,et al.  Martian precession and rotation from Viking lander range data , 1997 .

[4]  Agnes Fienga,et al.  The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy , 2011 .

[5]  E. V. Pitjeva,et al.  EPM ephemerides and relativity , 2009, Proceedings of the International Astronomical Union.

[6]  John E. Chambers,et al.  Primordial Excitation and Depletion of the Main Belt , 2002 .

[7]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[8]  E. Pitjeva,et al.  Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft , 2011, 1108.0246.

[9]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[10]  E. V. Pitjeva,et al.  Hidden Mass in the Asteroid Belt , 2002 .

[11]  A. Fienga,et al.  The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011, 1108.5546.

[12]  J. Laskar,et al.  GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory , 1987 .

[13]  E. Pitjeva Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft ranging , 2009, Proceedings of the International Astronomical Union.

[14]  Theory of Motion of Jupiter’s Galilean Satellites , 1977 .

[15]  V. E. Wood Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Nat. Bur. Standards, Washington, D.C., 1964) edited by M. Abramowitz and I. A. Stegun , 1969 .

[16]  E. Pitjeva Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation , 2001 .

[17]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[18]  E. Standish Planetary and Lunar Ephemerides: testing alternate gravitational theories , 2008 .

[19]  A. Trautman Theory of Gravitation , 1973 .

[20]  Mikhail Vasilyev,et al.  Era: Knowledge Base for Ephemeris and Dynamical Astronomy , 1997 .

[21]  E. Pitjeva,et al.  Constraints on dark matter in the solar system , 2013, 1306.5534.

[22]  G. Krasinsky,et al.  ANALYSIS OF LLR DATA BY THE PROGRAM SYSTEM ERA , 1997 .

[23]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[24]  J. Lieske,et al.  Dynamics and astrometry of natural and artificial celestial bodies. Selected papers. 165th Colloquium of the International Astronomical Union, Poznan (Poland), 1 - 5 Jul 1996. , 1996 .

[25]  National Radio Astronomy Observatory,et al.  VERY LONG BASELINE ARRAY ASTROMETRIC OBSERVATIONS OF THE CASSINI SPACECRAFT AT SATURN , 2010, 1012.0264.

[26]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[27]  W. Folkner,et al.  Radio-planetary from tie from Phobos-2 VLBI data , 1994 .

[28]  E. M. Standish,et al.  Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit , 2009 .

[29]  E. Pitjeva Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research , 2013, 1308.6416.

[30]  E. Pitjeva High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants , 2005 .

[31]  E. M. Standish,et al.  DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .

[32]  A. Fienga,et al.  INPOP06: a new numerical planetary ephemeris , 2008 .

[33]  Victor Brumberg,et al.  Essential Relativistic Celestial Mechanics , 1991 .

[34]  G. Krasinsky Dynamical History of the Earth–Moon System , 2002 .

[35]  E. I. Yagudina,et al.  Russian lunar ephemeris EPM-ERA 2012 , 2014 .

[36]  William M. Folkner,et al.  A new approach to determining asteroid masses from planetary range measurements , 2013 .

[37]  E. Pitjeva,et al.  The motion of major planets from observations 1769–1988 and some astronomical constants , 1993 .

[38]  Stephan D. Price,et al.  The Midcourse Space Experiment Infrared Minor Planet Survey , 2002 .

[39]  A. Fienga,et al.  INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.

[40]  L. Fairhead,et al.  An analytical formula for the time transformation TB-TT. , 1990 .

[41]  Agnes Fienga,et al.  Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity , 2013, 1306.5569.

[42]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[43]  E. Standish The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac , 1990 .