Adaptive Range Oversampling to Achieve Faster Scanning on the National Weather Radar Testbed Phased-Array Radar

This paper describes a real-time implementation of adaptive range oversampling processing on the National Weather Radar Testbed phased-array radar. It is demonstrated that, compared to conventional matched-filter processing, range oversampling can be used to reduce scan update times by a factor of 2 while producing meteorological data with similar quality. Adaptive range oversampling uses moment-specific transformations to minimize the variance of meteorological variable estimates. An efficient algorithm is introduced that allows for seamless integration with other signal processing functions and reduces the computational burden. Through signal processing, a new dimension is added to the traditional trade-off triangle that includes the variance of estimates, spatial coverage, and update time. That is, by trading an increase in computational complexity, data with higher temporal resolution can be collected and the variance of estimates can be improved without affecting the spatial coverage.

[1]  M. J. Carpenter,et al.  Doppler Radar Sampling Limitations in Convective Storms , 1985 .

[2]  Y. J. Lin,et al.  Pressure and temperature perturbations within a squall-line thunderstorm derived from SESAME dual-Doppler data , 1986 .

[3]  Vincent T. Wood,et al.  Improved WSR-88D Scanning Strategies for Convective Storms , 2000 .

[4]  V. Chandrasekar,et al.  Whitening Dual-Polarized Weather Radar Signals With a Hermitian Transformation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[5]  R. Vogt,et al.  Agile-Beam Phased Array Radar for Weather Observations , 2007 .

[6]  David J. Stensrud,et al.  Impact of Phased-Array Radar Observations over a Short Assimilation Period: Observing System Simulation Experiments Using an Ensemble Kalman Filter , 2010 .

[7]  R. A. Kropfli,et al.  Part II: Experimental Design and Procedures. , 1980 .

[8]  Sebastián M. Torres,et al.  Whitening in Range to Improve Weather Radar Spectral Moment Estimates. Part II: Experimental Evaluation , 2003 .

[9]  Sebastian M. Torres Estimation of Doppler and polarimetric variables for weather radars , 2001 .

[10]  A. D. Siggia,et al.  Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation , 2004 .

[11]  Christopher D. Curtis,et al.  Beam Multiplexing Using the Phased-Array Weather Radar , 2007 .

[12]  Roger M. Wakimoto,et al.  Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas , 2003 .

[13]  Joshua Wurman,et al.  The Multiple-Vortex Structure of a Tornado , 2002 .

[14]  Robert Palmer,et al.  Evaluation of the multifunction phased array radar planning process , 2008 .

[15]  Qin Xu,et al.  Least Squares Retrieval of Microburst Winds from Single-Doppler Radar Data , 1996 .

[16]  John McCarthy,et al.  Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection , 1984 .

[17]  Sebastián M. Torres,et al.  Whitening in Range to Improve Weather Radar Spectral Moment Estimates. Part I: Formulation and Simulation , 2003 .

[18]  Travis M. Smith,et al.  Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar , 2008 .

[19]  Jeffrey B. Knorr,et al.  A Mobile, Phased-Array Doppler Radar For The Study of Severe Convective Storms , 2010 .

[20]  Division on Earth Climate Evaluation of the multifunction phased array radar planning process , 2008 .

[21]  John Y. N. Cho,et al.  The Next-Generation Multimission U.S. Surveillance Radar Network , 2007 .

[22]  Alexander V. Ryzhkov,et al.  Rapid-Scan Super-Resolution Observations of a Cyclic Supercell with a Dual-Polarization WSR-88D , 2010 .

[23]  G. Galati,et al.  Optimisation of rejection filters , 1980 .

[24]  Sebastián M. Torres,et al.  High-Temporal-Resolution Capabilities of the National Weather Radar Testbed Phased-Array Radar , 2011 .

[25]  Sebastián M. Torres,et al.  Pseudowhitening of weather Radar signals to improve spectral moment and polarimetric variable estimates at low signal-to-noise ratios , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[26]  V. Chandrasekar,et al.  Short wavelength technology and the potential for distributed networks of small radar systems , 2009, 2009 IEEE Radar Conference.

[27]  Dusan S. Zrnic,et al.  Simulation of Weatherlike Doppler Spectra and Signals , 1975 .

[28]  Roger M. Wakimoto,et al.  Mobile Radar Observations of Severe Convective Storms , 2003 .

[29]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[30]  Sebastián M. Torres Demonstration of range oversampling techniques on the WSR-88D , 2005 .

[31]  Sebastián M. Torres,et al.  Whitening of Signals in Range to Improve Estimates of Polarimetric Variables , 2003 .

[32]  V. Chandrasekar,et al.  Wideband Reception and Processing for Dual-Polarization Radars with Dual Transmitters , 2007 .

[33]  Sebastián M. Torres,et al.  Design, Implementation, and Demonstration of a Staggered PRT Algorithm for the WSR-88D , 2004 .