Level set methods for inverse scattering

We give an overview of recent techniques which use a level set representation of shapes for solving inverse scattering problems. The main focus is on electromagnetic scattering using different popular models, such as for example Maxwell's equations, TM-polarized and TE-polarized waves, impedance tomography, a transport equation or its diffusion approximation. These models are also representative of a broader class of inverse problems. Starting out from the original binary approach of Santosa for solving the corresponding shape reconstruction problem, we successively develop more recent generalizations, such as for example using colour or vector level sets. Shape sensitivity analysis and topological derivatives are discussed as well in this framework. Moreover, various techniques for incorporating regularization into the shape inverse problem using level sets are demonstrated, which also include the choice of subclasses of simple shapes, such as ellipsoids, for the inversion. Finally, we present various numerical examples in two dimensions and in three dimensions for demonstrating the performance of level set techniques in realistic applications.

[1]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[2]  Jean Michel,et al.  Quelques resultats sur l'identification de domaines , 1973 .

[3]  Edward J. Haug,et al.  Optimization of distributed parameter structures , 1981 .

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[6]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[7]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[8]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[9]  Michel C. Delfour,et al.  Shape sensitivity analysis via min max differentiability , 1988 .

[10]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[11]  M. Cuer,et al.  Control of singular problem via differentiation of a min-max , 1988 .

[12]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[13]  A. P. Annan,et al.  Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy , 1989 .

[14]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[15]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[16]  N. Holmer,et al.  Electrical Impedance Tomography , 1991 .

[17]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[18]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[19]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[20]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .

[21]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[22]  M. Bonnet BIE and material differentiation applied to the formulation of obstacle inverse problems , 1995 .

[23]  F. Hettlich Frechet derivatives in inverse obstacle scattering , 1995 .

[24]  F. Natterer,et al.  A propagation-backpropagation method for ultrasound tomography , 1995 .

[25]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[26]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[27]  W. Rundell,et al.  Iterative methods for the reconstruction of an inverse potential problem , 1996 .

[28]  R. Kleinman,et al.  Modified gradient approach to inverse scattering for binary objects in stratified media , 1996 .

[29]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[30]  R. Potthast Domain Derivatives in Electromagnetic Scattering , 1996 .

[31]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[32]  Dominique Lesselier,et al.  Shape retrieval of an obstacle immersed in shallow water from single-frequency farfields using a complete family method , 1997 .

[33]  Michael Fehler,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .

[34]  William Rundell,et al.  Recovery of the support of a source term in an elliptic differential equation , 1997 .

[35]  P. M. van den Berg,et al.  Gradient Methods in Inverse Acoustic and Electromagnetic Scattering , 1997 .

[36]  George Papanicolaou,et al.  Mathematical problems in geophysical wave propagation. , 1998 .

[37]  Oliver Dorn,et al.  A transport-backtransport method for optical tomography , 1998 .

[38]  M. Lambert Te Scattering By a Cylindrical Dielectric Obstacle Buried in a Half-Space: a H-Field-Based Solution Method , 1998 .

[39]  William Rundell,et al.  The determination of a discontinuity in a conductivity from a single boundary measurement , 1998 .

[40]  Stanley Osher,et al.  Regularization of Ill-Posed Problems Via the Level Set Approach , 1998, SIAM J. Appl. Math..

[41]  Roland Potthast,et al.  A point source method for inverse acoustic and electromagnetic obstacle scattering problems , 1998 .

[42]  D. Lesselier,et al.  The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarization case and for Maxwellian materials , 1998 .

[43]  F. Santosa,et al.  Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set , 1998 .

[44]  Simon R. Arridge,et al.  RECOVERY OF REGION BOUNDARIES OF PIECEWISE CONSTANT COEFFICIENTS OF AN ELLIPTIC PDE FROM BOUNDARY DATA , 1999 .

[45]  Jan Sokołowski,et al.  Topological derivatives for elliptic problems , 1999 .

[46]  Jordan M. Berg,et al.  On Parameter Estimation Using Level Sets , 1999 .

[47]  S. Arridge Optical tomography in medical imaging , 1999 .

[48]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[49]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[50]  Andreas Rieder,et al.  On the regularization of nonlinear ill-posed problems via inexact Newton iterations , 1999 .

[51]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[52]  A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields , 1999 .

[53]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[54]  W. Clem Karl,et al.  Tomographic reconstruction using curve evolution , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[55]  O Dorn,et al.  Scattering and absorption transport sensitivity functions for optical tomography. , 2000, Optics express.

[56]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[57]  M. Boiti,et al.  Raman solitons in transient SRS , 2000 .

[58]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[59]  Dominique Lesselier,et al.  Special Section on Electromagnetic Imaging and Inversion of the Earth Sub-Surface , 2000 .

[60]  Adrianus T. de Hoop,et al.  Areas for exploration in electromagnetic modelling and inversion , 2000 .

[61]  P. Sabatier,et al.  Past and future of inverse problems , 2000 .

[62]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[63]  A. Wirgin Special section: Inverse problems in underwater acoustics , 2000 .

[64]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[65]  George Dassios,et al.  Low Frequency Scattering , 2000 .

[66]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[67]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[68]  M. Burger A level set method for inverse problems , 2001 .

[69]  Dominique Lesselier,et al.  CORRIGENDUM: Shape inversion from TM and TE real data by controlled evolution of level sets , 2001 .

[70]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[71]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[72]  Dominique Lesselier,et al.  Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation , 2001 .

[73]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[74]  P. M. van den Berg,et al.  Total variation as a multiplicative constraint for solving inverse problems. , 2001, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[75]  M. Saillard,et al.  Special section: Testing inversion algorithms against experimental data , 2001 .

[76]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[77]  A K Svinin,et al.  Modified (n-1,1)th Gelfand-Dickey hierarchies and Toda-type systems , 2001 .

[78]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[79]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[80]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[81]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[82]  Mathias Fink,et al.  Acoustic time-reversal mirrors , 2001 .

[83]  John R. Bowler,et al.  Thin-skin eddy-current inversion for the determination of crack shapes , 2002 .

[84]  James G. Berryman,et al.  Sensitivity analysis of a nonlinear inversion method for 3D electromagnetic imaging in anisotropic media , 2002 .

[85]  Dominique Lesselier,et al.  Foreword to the special section on electromagnetic and ultrasonic nondestructive evaluation , 2002 .

[86]  Kecheng Liu,et al.  Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review , 2002, IEEE Transactions on Information Technology in Biomedicine.

[87]  Aria Abubakar,et al.  The contrast source inversion method for location and shape reconstructions , 2002 .

[88]  Dominique Lesselier,et al.  On novel developments of controlled evolution of level sets in the field of inverse shape problems , 2002 .

[89]  Ross T. Whitaker,et al.  A direct approach to estimating surfaces in tomographic data , 2002, Medical Image Anal..

[90]  Set Weak Evolution and Transverse Field , Variational Applications and Shape Differential Equation , 2002 .

[91]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[92]  Vilmos Komornik,et al.  Upper and lower estimates in determining point sources in a wave equation , 2002 .

[93]  René Marklein,et al.  Linear and nonlinear inversion algorithms applied in nondestructive evaluation , 2002 .

[94]  Oliver Dorn,et al.  Shape reconstruction in scattering media with voids using a transport model and level sets , 2002 .

[95]  Vasilis Ntziachristos,et al.  A submillimeter resolution fluorescence molecular imaging system for small animal imaging. , 2003, Medical physics.

[96]  Jean-Yves Dauvignac,et al.  An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique , 2003 .

[97]  Aria Abubakar,et al.  Contrast source inversion methods in elastodynamics. , 2003, The Journal of the Acoustical Society of America.

[98]  Applied mathematics and wavefield inversion : combining physical insight and simple theoretical machineries , 2003 .

[99]  On the controlled evolution of level sets and like methods: the shape and contrast reconstruction , 2003 .

[100]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[101]  O. Scherzer,et al.  LETTER TO THE EDITOR: On the relation between constraint regularization, level sets, and shape optimization , 2006 .

[102]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[103]  W. Clem Karl,et al.  A curve evolution approach to object-based tomographic reconstruction , 2003, IEEE Trans. Image Process..

[104]  Jean-Yves Dauvignac,et al.  RECONSTRUCTION OF COMPLEX AND MULTIPLE SHAPE OBJECT CONTOURS USING A LEVEL SET METHOD , 2003 .

[105]  Peter Monk,et al.  The Linear Sampling Method for Solving the Electromagnetic Inverse Scattering Problem , 2002, SIAM J. Sci. Comput..

[106]  Kazufumi Ito,et al.  Level Set Methods for Variational Problems and Applications , 2003 .

[107]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[108]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[109]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[110]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[111]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[112]  EXISTENCE RESULTS FOR A BOUNDARY VALUE PROBLEM ARISING IN GROWING CELL POPULATIONS , 2003 .

[113]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[114]  T. Chan,et al.  Multiple level set methods with applications for identifying piecewise constant functions , 2004 .

[115]  Hongkai Zhao,et al.  Imaging of location and geometry for extended targets using the response matrix , 2004 .

[116]  M. Burger Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .

[117]  Weng C. Chew,et al.  FOREWORD: Special section on electromagnetic characterization of buried obstacles , 2004 .

[118]  Andreas Kirsch,et al.  THE FACTORIZATION METHOD FOR MAXWELL'S EQUATIONS , 2004 .

[119]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[120]  Hubert Maigre,et al.  Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap , 2004 .

[121]  M. Burger,et al.  Level set methods for geometric inverse problems in linear elasticity , 2004 .

[122]  P. M. Berg,et al.  Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects , 2004 .

[123]  Marc Saillard,et al.  Retrieval of inhomogeneous targets from experimental frequency diversity data , 2005 .

[124]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[125]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[126]  Houssem Haddar,et al.  On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..

[127]  Peter M. Pinsky,et al.  An application of shape optimization in the solution of inverse acoustic scattering problems , 2004 .

[128]  Bojan B. Guzina,et al.  Sounding of finite solid bodies by way of topological derivative , 2004 .

[129]  M. Burger,et al.  Incorporating topological derivatives into level set methods , 2004 .

[130]  Bojan B. Guzina,et al.  Topological derivative for the inverse scattering of elastic waves , 2004 .

[131]  E. Haber A multilevel, level-set method for optimizing eigenvalues in shape design problems , 2004 .

[132]  Michael Hintermüller,et al.  A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..

[133]  Pierre Moulin,et al.  A Self-Referencing Level-Set Method for Image Reconstruction from Sparse Fourier Samples , 2004, International Journal of Computer Vision.

[134]  Armand Wirgin,et al.  Marine Acoustics: Direct and Inverse Problems , 2004 .

[135]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[136]  Dana H. Brooks,et al.  A Method to Reconstruct Activation Wavefronts Without Isotropy Assumptions Using a Level Sets Approach , 2005, FIMH.

[137]  Trond Mannseth,et al.  Combined Adaptive Multiscale and Level-Set Parameter Estimation , 2005, Multiscale Model. Simul..

[138]  F. Santosa,et al.  A topology-preserving level set method for shape optimization , 2004, math/0405142.

[139]  Manuel Kindelan,et al.  History matching problem in reservoir engineering using the propagation–backpropagation method , 2005 .

[140]  Bessem Samet,et al.  The topological asymptotic expansion for the Maxwell equations and some applications , 2005 .

[141]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[142]  A. Litman,et al.  Reconstruction by level sets of n-ary scattering obstacles , 2005 .

[143]  S. Osher,et al.  Maximizing band gaps in two-dimensional photonic crystals by using level set methods , 2005 .

[144]  A. Massa,et al.  Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[145]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[146]  F. FRÜHAUF,et al.  Analysis of Regularization Methods for the Solution of Ill-Posed Problems Involving Discontinuous Operators , 2005, SIAM J. Numer. Anal..

[147]  Ekaterina Iakovleva,et al.  MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions , 2005 .

[148]  A. Massa,et al.  Parallel GA-based approach for microwave imaging applications , 2005, IEEE Transactions on Antennas and Propagation.

[149]  Ekaterina Iakovleva,et al.  A MUSIC Algorithm for Locating Small Inclusions Buried in a Half-Space from the Scattering Amplitude at a Fixed Frequency , 2005, Multiscale Model. Simul..

[150]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[151]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[152]  Bernhard Brandstätter,et al.  A FEM‐BEM approach using level‐sets in electrical capacitance tomography , 2005 .

[153]  Marc Saillard,et al.  Special section on testing inversion algorithms against experimental data: inhomogeneous targets , 2005 .

[154]  Manuchehr Soleimani,et al.  A Narrow-Band Level Set Method Applied to EIT in Brain for Cryosurgery Monitoring , 2006, IEEE Transactions on Biomedical Engineering.

[155]  Miguel Moscoso,et al.  Detection of Small Tumors in Microwave Medical Imaging Using Level Sets and Music , 2006 .

[156]  S R Arridge,et al.  Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique. , 2006, Optics letters.

[157]  Miguel Moscoso,et al.  Radiative transport theory for optical molecular imaging , 2006 .

[158]  Uri M. Ascher,et al.  On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..

[159]  M. Soleimani,et al.  Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data , 2006 .

[160]  Roland Potthast,et al.  A survey on sampling and probe methods for inverse problems , 2006 .

[161]  O. Dorn,et al.  Simultaneous Characterization of Geological Shapes and Permeability Distributions in Reservoirs using The Level Set Method , 2006 .

[162]  Uri M. Ascher,et al.  Shape Reconstruction in 3D Electromagnetic Induction Tomography Using a Level-set Technique , 2006 .

[163]  G. Bal,et al.  RECONSTRUCTION OF SINGULAR SURFACES BY SHAPE SENSITIVITY ANALYSIS AND LEVEL SET METHOD , 2006 .

[164]  D. Baillargeat,et al.  Design of Microwave Components using Topology Gradient Optimization , 2006, 2006 European Microwave Conference.

[165]  Bojan B. Guzina,et al.  Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics , 2006 .

[166]  J. Ripoll,et al.  Diffuse photon propagation in multilayered geometries , 2006, Physics in medicine and biology.

[167]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[168]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[169]  Simon R. Arridge,et al.  3D Shape Reconstruction in Optical Tomography Using Spherical Harmonics and BEM , 2006 .

[170]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[171]  Simon R. Arridge,et al.  Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method , 2006 .

[172]  M. Lysaker TOWARDS A LEVEL SET FRAMEWORK FOR INFARCTION MODELING: AN INVERSE PROBLEM , 2006 .

[173]  O. Dorn,et al.  Shape Reconstruction from Two-Phase Incompressible Flow Data using Level Sets , 2007 .

[174]  Magne S. Espedal,et al.  Reservoir Description Using a Binary Level Set Approach with Additional Prior Information About the Reservoir Model , 2007 .

[175]  I. Berre,et al.  A level-set corrector to an adaptive multiscale permeability prediction , 2007 .

[176]  W. Fang Multi-phase permittivity reconstruction in electrical capacitance tomography by level-set methods , 2007 .

[177]  Benjamin Hackl,et al.  Methods for Reliable Topology Changes for Perimeter-Regularized Geometric Inverse Problems , 2007, SIAM J. Numer. Anal..

[178]  Ekaterina Iakovleva,et al.  MUSIC-Type Electromagnetic Imaging of a Collection of Small Three-Dimensional Inclusions , 2007, SIAM J. Sci. Comput..

[179]  Simon R. Arridge,et al.  Reconstruction of Simple Geometric Objects in 3D Optical Tomography Using an Adjoint Technique and a Boundary Element Method , 2008 .

[180]  Stanley Osher,et al.  Level Set Methods, with an Application to Modeling the Growth of Thin Films , 2019, Free boundary problems:.