Consecuencias del efecto Bullwhip según distintas estrategias de gestión de la cadena de suministro: modelado y simulación // Bullwhip Effect Consequences according to Different Supply Chain Management Strategies: Modelling and Simulation

El efecto Bullwhip es uno de los principales causantes de las inestabilidades en el proceso de gestion de demanda que se producen a lo largo de la cadena de suministro. El presente articulo expone un modelo capaz de recrear diferentes escenarios para la gestion de demanda en una cadena de suministro determinada, con independencia del numero de niveles definidos en la cadena de suministro considerada. El modelo, realizado utilizando la metodologia de la dinamica de sistemas, incorpora las variables necesarias para simular dicho proceso de gestion de demanda, como por ejemplo: niveles de inventario, ordenes de reabastecimiento, fabricacion, previsiones u otras. Se muestra la utilidad del modelo propuesto, comparando los resultados que ofrecen dos escenarios diferentes, como son los representados por una cadena tradicional y el de una cadena reducida. = The Bullwhip effect is one of the main causes of instability in the management demand process along the Supply Chain. We introduce a model which is able to reproduce different Supply Chain Management Scenarios within a determinate Supply Chain with whichever the levels of this one. The model has been built using Systems Dynamics Methodology and incorporates the main variables which are required for simulating the Management Demand Process (Inventory levels, Replenishment orders, manufacturing process, forecasting etc.). This paper demonstrates the utility of the proposed model comparing the results offered by two different scenarios namely Traditional supply chain and Reduced supply chain.

[1]  Mohamed Mohamed Naim,et al.  Smoothing Supply Chain Dynamics , 1991 .

[2]  Jayashankar M. Swaminathan,et al.  Models for Supply Chains in E-Business , 2003, Manag. Sci..

[3]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[4]  J. Forrester Principles of systems : text and workbook, chapters 1 through 10 , 1968 .

[5]  Mohamed Mohamed Naim,et al.  Dynamic analysis of a WIP compensated decision support system , 1994 .

[6]  S. Disney,et al.  On variance amplification in a three-echelon supply chain with minimum mean square error forecasting , 2022 .

[7]  Terry P. Harrison,et al.  The Bullwhip Effect—Impact of Stochastic Lead Time, Information Quality, and Information Sharing: A Simulation Study , 2004 .

[8]  Z. Drezner,et al.  Quantifying the Bullwhip E ect in a Simple Supply Chain : The Impact of Forecasting , Lead Times and Information , 2007 .

[9]  D. Sterman,et al.  Misperceptions of Feedback in a Dynamic Decision Making Experiment , 1989 .

[10]  John N. Warfield,et al.  World dynamics , 1973 .

[11]  S. Disney,et al.  On the bullwhip and inventory variance produced by an ordering policy , 2003 .

[12]  Stephen M. Disney,et al.  The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective , 2004, Eur. J. Oper. Res..

[13]  John D. Sterman,et al.  System Dynamics: Systems Thinking and Modeling for a Complex World , 2002 .

[14]  Jay Wright Forrester,et al.  Urban Dynamics , 1969 .

[15]  R G Coyle,et al.  System Dynamics Modelling: A Practical Approach , 1996 .

[16]  Javier Aracil Santonja,et al.  Dinámica de sistemas: paradigma de pensamiento , 2012 .

[17]  S. Disney,et al.  Vendor-managed inventory and bullwhip reduction in a two-level supply chain , 2003 .