Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Pτ for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter χ including pressure, confinement time, and temperature is derived to complement the product Pτ. A metric for performance assessment should include both χ and Pτ. The ignition parameter and the product Pτ are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Pτ∼1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Pτ∼1 atm s. Since OMEGA implosions are relatively cold (T∼2 keV), their overall ignition parameter χ∼0.02–0.03 is ∼5× lower than in JET (χ∼0.13), where the average temp...

[1]  R. Betti,et al.  Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules , 2001 .

[2]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[3]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[4]  J. Garnier,et al.  The role of nuclear reactions and α-particle transport in the dynamics of inertial confinement fusion capsules , 2008 .

[5]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[6]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[7]  Lobatchev,et al.  Ablative stabilization of the deceleration phase rayleigh-taylor instability , 2000, Physical review letters.

[8]  Ramon Joe Leeper,et al.  A neutron spectrometer for precise measurements of DT neutrons from 10 to 18 MeV at OMEGA and the National Ignition Facility , 2001 .

[9]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[10]  Timothy W. Collins,et al.  Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega , 2010 .

[11]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[12]  Riccardo Betti,et al.  Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .

[13]  P. B. Radha,et al.  High-areal-density fuel assembly in direct-drive cryogenic implosions. , 2008, Physical review letters.

[14]  A. Kemp,et al.  Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets. , 2001, Physical Review Letters.

[15]  L. Spitzer Physics of fully ionized gases , 1956 .

[16]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[17]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[18]  Riccardo Betti,et al.  A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion , 2008 .

[19]  P. H. Rebut,et al.  The JET Experiment: Evolution, Present Status, and Prospects , 1987 .

[20]  P. B. Radha,et al.  Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA , 2004 .

[21]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[22]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[23]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[24]  S. Atzeni,et al.  Nonlinear evolution of localized perturbations in the deceleration-phase Rayleigh-Taylor instability of an inertial confinement fusion capsule , 2007 .

[25]  S. Atzeni,et al.  Inertial confinement fusion: Ignition of isobarically compressed D-T targets , 1984 .

[26]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[27]  小野 周,et al.  L. Spitzer: Physics of Fully Ionized Gases, Interscience Tracts on Physics and astronomy, New york, 1956, 105頁, 13×21cm. , 1956 .

[28]  R. Betti,et al.  High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .

[29]  S. Skupsky,et al.  Deceleration phase of inertial confinement fusion implosions , 2002 .

[30]  Jonathan D. Zuegel,et al.  Secondary-neutron-yield measurements by current-mode detectors , 2001 .

[31]  Roy Kishony,et al.  Ignition condition and gain prediction for perturbed inertial confinement fusion targets , 2001 .