GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

Abstract In this paper the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea salt that is used to estimate the aerosol indirect effect is described. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows one to predict aerosol effects on cloud optical thickness and microphysical process rates. The aerosol indirect effect is calculated by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day versus preindustrial emissions. Both the first and second indirect effects are explored. The sensitivity of the results presented here to...

[1]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[2]  J. Hansen,et al.  Global warming in the twenty-first century: an alternative scenario. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Welch,et al.  Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP , 1998 .

[4]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[5]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[6]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[7]  J. P. Taylor,et al.  Measurements of Cloud Susceptibility , 1994 .

[8]  Melanie A. Wetzel,et al.  Chemical and microphysical properties of marine stratiform cloud in the North Atlantic , 1998 .

[9]  Why is the cloud albedo — Particle size relationship different in optically thick and optically thin clouds? , 2000 .

[10]  Shao-Meng Li,et al.  Aerosol observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: Relationships among cloud condensation nuclei, size distribution, and chemistry , 1996 .

[11]  J. Lelieveld,et al.  Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model , 1998 .

[12]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[13]  Philip J. Rasch,et al.  A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .

[14]  Hiroshi L. Tanaka,et al.  Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere , 1997 .

[15]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[16]  Jean-Pierre Blanchet,et al.  Modeling sea‐salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes , 1997 .

[17]  George A. Isaac,et al.  Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations , 1996 .

[18]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[19]  C. O'Dowd,et al.  Coupling sea‐salt and sulphate interactions and its impact on cloud droplet concentration predictions , 1999 .

[20]  George A. Isaac,et al.  The relationship between cloud droplet number concentrations and anthropogenic pollution : observations and climatic implications , 1992 .

[21]  D. Lilly,et al.  Cloud factor and seasonality of the indirect effect of anthropogenic sulfate aerosols , 1997 .

[22]  S. Twomey,et al.  Aerosols, clouds and radiation , 1991 .

[23]  Leon D. Rotstayn,et al.  On the “tuning” of autoconversion parameterizations in climate models , 2000 .

[24]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[25]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[26]  Michael D. King,et al.  Optical properties of marine stratocumulus clouds modified by ships , 1993 .

[27]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[28]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[29]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[30]  Taneil Uttal,et al.  Variability of Cloud Vertical Structure during ASTEX Observed from a Combination of Rawinsonde, Radar, Ceilometer, and Satellite , 1999 .

[31]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[32]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[33]  Jonathan P. Taylor,et al.  The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1i and 1ii , 2000 .

[34]  R. Welch,et al.  Near‐global survey of cloud column susceptibilities using ISCCP data , 2000 .

[35]  Jonathan P. Taylor,et al.  The Appearance and Disappearance of Ship Tracks on Large Spatial Scales , 2000 .

[36]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[37]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[38]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[39]  J. Hudson Cloud Condensation Nuclei , 1993 .

[40]  S. Menon,et al.  Role of sulfates in regional cloud–climate interactions 1 Paper was presented at the 12th International Conference on Clouds and Precipitation, Zurich, Switzerland, August 1996. 1 , 1998 .

[41]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[42]  H. Treut,et al.  Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical processes , 1995 .

[43]  L. Merlivat,et al.  Air-Sea Gas Exchange Rates: Introduction and Synthesis , 1986 .

[44]  M. Yao,et al.  Efficient Cumulus Parameterization for Long-Term Climate Studies: The GISS Scheme , 1993 .

[45]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[46]  R. Van Dingenen,et al.  Chemical mass closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2 , 2000 .

[47]  J. Brenguier,et al.  Cloud condensation nuclei and cloud droplet measurements during ACE-2 , 2000 .

[48]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[49]  O. Boucher GCM Estimate of the Indirect Aerosol Forcing Using Satellite-Retrieved Cloud Droplet Effective Radii , 1995 .

[50]  E. Méeszáros Cloud condensation nuclei , 1988 .

[51]  Gerald G. Mace,et al.  Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave radar data , 1998 .

[52]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[53]  C. Rosenzweig,et al.  Land-Surface Model Development for the GISS GCM , 1997 .

[54]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[55]  Anthony D. Del Genio,et al.  A Prognostic Cloud Water Parameterization for Global Climate Models , 1996 .

[56]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[57]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[58]  S. Twomey,et al.  Determining the Susceptibility of Cloud Albedo to Changes in Droplet Concentration with the Advanced Very High Resolution Radiometer , 1994 .

[59]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[60]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[61]  Y. Kaufman,et al.  The effect of smoke particles on clouds and climate forcing , 1997 .

[62]  Ronald,et al.  Drizzle Suppression in Ship Tracks. , 2000 .

[63]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[64]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[65]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[66]  V. Canuto,et al.  An Improved Model for the Turbulent PBL , 2002 .

[67]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[68]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[69]  S. Ghan,et al.  Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei , 1998 .

[70]  Sulfate‐induced cooling in the southeastern U.S.: An observational assessment , 1999 .

[71]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[72]  W. Rossow,et al.  Precipitation water path and rainfall rate estimates over oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data , 1997 .

[73]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[74]  William R. Cotton,et al.  A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida , 1980 .

[75]  M. King,et al.  Direct and Remote Sensing Observations of the Effects of Ships on Clouds , 1989, Science.

[76]  C. F. Rogers,et al.  The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations , 1994 .

[77]  Joyce E. Penner,et al.  Towards the development of a global inventory for black carbon emissions , 1993 .

[78]  R. Welch,et al.  Global variation of column droplet concentration in low‐level clouds , 1998 .

[79]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[80]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[81]  Leon D. Rotstayn,et al.  Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects , 1999 .

[82]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .