Mechanism of DNA compaction by yeast mitochondrial protein Abf2p.

[1]  R. Baskin,et al.  Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. , 2003, Biophysical journal.

[2]  Y. Lyubchenko,et al.  Visualization of hemiknot DNA structure with an atomic force microscope. , 2002, Nucleic acids research.

[3]  James E Masse,et al.  The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. , 2002, Journal of molecular biology.

[4]  E. Baldwin,et al.  The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex. , 2002, Journal of molecular biology.

[5]  Jae-Hyoung Cho,et al.  The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression. , 2001, Biochimica et biophysica acta.

[6]  M. Bianchi,et al.  Spatially Precise DNA Bending Is an Essential Activity of the Sox2 Transcription Factor* , 2001, The Journal of Biological Chemistry.

[7]  Charles M. Lieber,et al.  Direct Imaging of Human SWI/SNF-Remodeled Mono- and Polynucleosomes by Atomic Force Microscopy Employing Carbon Nanotube Tips , 2001, Molecular and Cellular Biology.

[8]  R. Sinden,et al.  The structure of intramolecular triplex DNA: atomic force microscopy study. , 2001, Journal of molecular biology.

[9]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[10]  J. Hoh,et al.  Cationic silanes stabilize intermediates in DNA condensation , 1999, FEBS letters.

[11]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[12]  J. Hoh,et al.  Early Intermediates in Spermidine-Induced DNA Condensation on the Surface of Mica , 1998 .

[13]  C. Bustamante,et al.  Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. , 1998, Journal of molecular biology.

[14]  D. MacAlpine,et al.  The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  L. Nilsson,et al.  Interaction of human SRY protein with DNA: A molecular dynamics study , 1998, Proteins.

[16]  P. Perlman,et al.  Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. , 1998, Genetics.

[17]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[18]  H. Hansma,et al.  Properties of biomolecules measured from atomic force microscope images: a review. , 1997, Journal of structural biology.

[19]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R Balhorn,et al.  AFM analysis of DNA-protamine complexes bound to mica. , 1997, Nucleic acids research.

[21]  C. Bustamante,et al.  Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. , 1996, Journal of molecular biology.

[22]  J. G. McAfee,et al.  Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. , 1996, Biochemistry.

[23]  A. Gronenborn,et al.  NMR spectroscopic analysis of the DNA conformation induced by the human testis determining factor SRY. , 1995, Biochemistry.

[24]  David A. Case,et al.  Structural basis for DNA bending by the architectural transcription factor LEF-1 , 1995, Nature.

[25]  C. Bustamante,et al.  DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. , 1994, Science.

[26]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[27]  J. Keeler,et al.  The solution structure and dynamics of the DNA-binding domain of HMG-D from Drosophila melanogaster. , 1994, Structure.

[28]  J. Gatewood,et al.  Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. , 1993, Biochemistry.

[29]  T. Megraw,et al.  Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[31]  J. Diffley,et al.  A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Kuroiwa,et al.  Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. , 1991, Experimental cell research.

[33]  J. Diffley,et al.  Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Kuroiwa,et al.  Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. , 1987, Journal of cell science.

[35]  T. Odijk Theory of lyotropic polymer liquid crystals , 1986 .

[36]  T. Kuroiwa,et al.  Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in the yeast, Saccharomyces cerevisiae. , 1984, Journal of cell science.

[37]  V. Zhurkin,et al.  Correlations between deoxyribonucleic acid structural parameters and calculated circular dichroism spectra. , 1981, Biochemistry.

[38]  M. McPherson,et al.  A compact form of rat liver mitochondrial DNA stabilized by bound proteins. , 1979, The Journal of biological chemistry.

[39]  W. C. Johnson,et al.  Circular dichroism and DNA secondary structure. , 1979, Nucleic acids research.

[40]  U. Wintersberger,et al.  Cytogenetic demonstration of mitotic chromosomes in the yeast Saccharomyces cerevisiae , 1975, Molecular and General Genetics MGG.

[41]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[42]  S. Edmondson,et al.  DNA binding proteins Sac7d and Sso7d from Sulfolobus. , 2001, Methods in enzymology.

[43]  Y. Lyubchenko,et al.  Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. , 2001, Methods in molecular biology.

[44]  Donald Voet,et al.  Fundamentals of Biochemistry , 1999 .

[45]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[46]  C. Bustamante,et al.  Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. , 1996, Annual review of biophysics and biomolecular structure.

[47]  Hiromi Yamakawa,et al.  Modern Theory of Polymer Solutions , 1971 .

[48]  T. B. Grimley The Volume Effect in Polymer Chains , 1953 .

[49]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .