Cascade sliding mode controller for self-excited induction generator

This paper presents a simple control structure based on the sliding mode algorithm for an isolated-loaded induction generator (IG). The machine delivers an active power to a dc-load via a converter connected to a single capacitor on the dc side. Since the converter/capacitor model is nonlinear, the sliding mode technique constitutes a powerful tool to ensure the dc-bus voltage regulation. The computer simulations are provided to verify the validity of the proposed control algorithm. Resume - Ce papier presente une commande de structure simple basee sur l'algorithme du mode de glissement pour une generatrice asynchrone auto excitee. La generatrice delivre une puissance active a une charge continue par la voie d'un convertisseur connecte a un condensateur du cote continu. Puisque le modele convertisseur / condensateur est non lineaire, la technique du mode de glissement constitue un outil puissant pour assurer la regulation de la tension du bus continu. Les simulations par ordinateur sont fournies pour verifier la validite de l'algorithme du controle propose.

[1]  S.S. Venkata,et al.  Influence of Torsional Vibrations on Lateral Oscillations of Induction Motor Rotors , 1985, IEEE Power Engineering Review.

[2]  Abdulrahman I. Alolah,et al.  Capacitance requirement for isolated self-exicted induction generator , 1990 .

[3]  N. Malik,et al.  Influence of the terminal capacitor on the performance characteristics of a self excited induction generator , 1990 .

[4]  T. F. Chan,et al.  Capacitance requirements of self-excited induction generators , 1993 .

[5]  Bhim Singh,et al.  Transient performance of the self regulated short shunt self excited induction generator , 1995 .

[6]  Olorunfemi Ojo Performance of self-excited single-phase induction generators with shunt, short-shunt and long-shunt excitation connections , 1996 .

[7]  F.M.M. Bassiouny,et al.  New approach to determine the critical capacitance for self-excited induction generators , 1998 .

[8]  Francesco Cupertino,et al.  Sliding mode control of an induction motor , 2000 .

[9]  Dong-Choon Lee,et al.  DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization , 2000 .

[10]  R. Abdessemed,et al.  Cascade sliding mode control of a stator field oriented double fed induction motor drive , 2002 .

[11]  M. F. Rahman,et al.  Inverter supplied voltage control system for an isolated induction generator driven by a wind turbine , 2003, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003..

[12]  J.T. de Resende,et al.  Control of the generated voltage by a three-phase induction generator self-excited by capacitors using control techniques , 2003, IEEE International Conference on Industrial Technology, 2003.

[13]  M.-R. Akbarzadeh-T,et al.  A new variable structure control methodology for electrical/mechanical parameter estimation of induction motor , 2003, Proceedings of the 2003 American Control Conference, 2003..

[14]  Tarek Ahmed,et al.  Static VAR compensator-based voltage control implementation of single-phase self-excited induction generator , 2005 .

[15]  Massoum Ahmed,et al.  INPUT OUTPUT LINEARIZATION AND SLIDING MODE CONTROL OF A PERMANENT MAGNET SYNCHRONOUS MACHINE FED BY A THREE LEVELS INVERTER , 2006 .

[16]  T. Rekioua,et al.  Control strategies for an autonomous induction generator taking the saturation effect into account , 2007, 2007 European Conference on Power Electronics and Applications.

[17]  M. M'Saad,et al.  Robust sliding mode control of a DFIG variable speed wind turbine for power production optimization , 2008, 2008 16th Mediterranean Conference on Control and Automation.