Magnetic properties of a diluted transverse spin-1 Ising nanocube with a longitudinal crystal-field

In the present work, the effective field theory with correlations based on the probability distribution technique has been used to investigate the effect of the surface shell longitudinal cristal field on the magnetic properties of a diluted antiferromagnetic spin-1 Ising nanocube particle. This effect has also been studied on the hysteresis loops of the system. It is found that this parameter has a strong effect on the magnetization profiles, compensation temperature, coercive field and remanent magnetization.

[1]  R. Ahuja,et al.  Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle , 2015 .

[2]  Shuhong Yu,et al.  Layered copper metagermanate nanobelts: hydrothermal synthesis, structure, and magnetic properties. , 2007, Journal of the American Chemical Society.

[3]  B. Deviren,et al.  Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume–Capel model , 2012 .

[4]  A. Benyoussef,et al.  Nanographene Magnetic Properties: A Monte Carlo Study , 2012 .

[5]  L. Liz‐Marzán,et al.  Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes , 2007 .

[6]  E. Kantar,et al.  Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures , 2015 .

[7]  O. Canko,et al.  Some characteristic behavior of spin-1 Ising nanotube , 2011 .

[8]  G. Markovich,et al.  Control of Defects and Magnetic Properties in Colloidal HfO2 Nanorods , 2007 .

[9]  Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system , 2014, 1406.6544.

[10]  M. Keskin,et al.  Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique , 2013 .

[11]  H. Zabel,et al.  Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires. , 2008, Physical review letters.

[12]  Enric Bertran,et al.  Magnetic behaviour of non-contacting Ni nanoparticles encapsulated in vertically aligned carbon nanotubes , 2010 .

[13]  L. Bergström,et al.  Anomalous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe(1-x)O|Fe(3-δ)O4 core|shell nanocubes to single-phase particles. , 2013, ACS nano.

[14]  S. Bader Colloquium: Opportunities in Nanomagnetism , 2006 .

[15]  R. Ahuja,et al.  Magnetic properties of a diluted spin-1/2 Ising nanocube , 2016 .

[16]  R. Birringer,et al.  Synthesis and magnetic properties of cobalt nanocubes , 2006 .

[17]  W. Figueiredo,et al.  Phase diagram of uniaxial antiferromagnetic particles: Field perpendicular to the easy axis , 2008 .

[18]  R. Ahuja,et al.  Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube , 2015 .

[19]  C. Ulhaq,et al.  Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles , 2011 .

[20]  M. McHenry,et al.  Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy , 2008 .

[21]  H. Polat,et al.  Non-equilibrium dynamics of a ferrimagnetic core–shell nanocubic particle , 2014 .

[22]  G. Salazar-Alvarez,et al.  Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles , 2014, 1406.3966.

[23]  M. Saber A SIMPLE APPROXIMATION METHOD FOR DILUTE ISING SYSTEMS , 2005 .

[24]  Numan Şarlı Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices , 2015 .

[25]  E. Kantar,et al.  Magnetic hysteresis and compensation behaviors in spin-1 bilayer Ising model , 2014 .

[26]  A. Ainane,et al.  Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field , 2012 .

[27]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .

[28]  Nina Friedenberger,et al.  Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes. , 2011, Nano letters.

[29]  R. Ahuja,et al.  Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube , 2015 .

[30]  M. Keskin,et al.  Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire , 2012 .

[31]  Kamil Argin,et al.  Hysteresis behavior of Blume–Capel model on a cylindrical Ising nanotube , 2014 .

[32]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[33]  H. Chiriac,et al.  Surface magnetization processes in soft magnetic nanowires , 2010 .

[34]  Role of surface disorder on the magnetic properties and hysteresis of nanoparticles , 2003, cond-mat/0307584.

[35]  P. Gao,et al.  Structure and magnetic properties of three-dimensional (La,Sr)MnO3 nanofilms on ZnO nanorod arrays , 2011 .

[36]  C. Au,et al.  Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 °C and their magnetic properties , 2010 .

[37]  Yong Hu,et al.  The effect of field-cooling strength and interfacial coupling on exchange bias in a granular system of ferromagnetic nanoparticles embedded in an antiferromagnetic matrix , 2007 .

[38]  M. Toney,et al.  Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. , 2012, Journal of the American Chemical Society.

[39]  I. P. Fittipaldi,et al.  Thermodynamical properties of the transverse Ising model , 1985 .