Model-Checking: A Tutorial Introduction

In the past two decades, model-checking has emerged as a promising and powerful approach to fully automatic verification of hardware systems. But model checking technology can be usefully applied to other application areas, and this article provides fundamentals that a practitioner can use to translate verification problems into model-checking questions. A taxonomy of the notions of "model," "property," and "model checking" are presented, and three standard model-checking approaches are described and applied to examples.

[1]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[2]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1994, Theor. Comput. Sci..

[3]  G. Winskel,et al.  A Compositional Proof System for the Modal mu-Calculus , 1994 .

[4]  Faron Moller,et al.  Verification on Infinite Structures , 2001, Handbook of Process Algebra.

[5]  Kim Guldstrand Larsen,et al.  Timed Modal Specification —Theory and Tools , 1997 .

[6]  Liz Sonenberg,et al.  Fixed Point Theorems and Semantics: A Folk Tale , 1982, Inf. Process. Lett..

[7]  Javier Esparza,et al.  More infinite results , 2001, INFINITY.

[8]  David A. Schmidt,et al.  Program Analysis as Model Checking of Abstract Interpretations , 1998, SAS.

[9]  Rance Cleaveland,et al.  Pragmatics of model checking: an STTT special section , 1999, International Journal on Software Tools for Technology Transfer.

[10]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[11]  Kim G. Larsen,et al.  Timed Modal Specification - Theory and Tools , 1993, CAV.

[12]  G. E. Hughes,et al.  An introduction to modal logic, 2e éd., 1 vol , 1973 .

[13]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[14]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[15]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[16]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  G. Grätzer General Lattice Theory , 1978 .

[18]  J. Esparza More Innnite Results , 1996 .

[19]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[20]  Edmund M. Clarke,et al.  Compositional model checking , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[21]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[22]  Patrice Godefroid,et al.  Refining Dependencies Improves Partial-Order Verification Methods (Extended Abstract) , 1993, CAV.

[23]  F. Moller Veriication on Innnite Structures , 2000 .

[24]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theoretical Computer Science.

[25]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[26]  Edmund M. Clarke,et al.  Verification Tools for Finite-State Concurrent Systems , 1993, REX School/Symposium.

[27]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[28]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[29]  Susanne Graf,et al.  Compositional Minimization of Finite State Systems Using Interface Speciications , 1995 .

[30]  Pierre Wolper,et al.  Using partial orders for the efficient verification of deadlock freedom and safety properties , 1991, Formal Methods Syst. Des..

[31]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[32]  Rance Cleaveland,et al.  Faster Model Checking for the Modal Mu-Calculus , 1992, CAV.

[33]  Antti Valmari,et al.  On-the-Fly Verification with Stubborn Sets , 1993, CAV.

[34]  K. Larsen A Constraint Oriented Proof Methodology based on Modal Transition Systems , 1994 .

[35]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[36]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[37]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[38]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[39]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[40]  Kim G. Larsen,et al.  A Constraint Oriented Proof Methodology Based on Modal Transition Systems , 1994, TACAS.

[41]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[42]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..