Solving a two-objective green transportation problem by using meta-heuristic methods under uncertain fuzzy approach

[1]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[2]  Amit Kumar,et al.  A new method for solving fuzzy transportation problems using ranking function , 2011 .

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[5]  Chiang Kao,et al.  Solving fuzzy transportation problems based on extension principle , 2004, Eur. J. Oper. Res..

[6]  S. Chanas,et al.  A fuzzy approach to the transportation problem , 1984 .

[7]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  S. A. Abass,et al.  A PARAMETRIC STUDY ON TRANSPORTATION PROBLElVI UNDER FUZZY ENVIRONMENT , 2002 .

[10]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[11]  Christine L. Mumford,et al.  A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling , 2014 .

[12]  Lean Yu,et al.  Multi-depot vehicle routing problem for hazardous materials transportation: A fuzzy bilevel programming , 2017, Inf. Sci..

[13]  B. Werners An interactive fuzzy programming system , 1987 .

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  H. Zimmermann,et al.  Fuzzy Set Theory— and Its Applications Second, Revised Edition , 2008 .

[16]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[17]  Susmita Bandyopadhyay,et al.  Applying modified NSGA-II for bi-objective supply chain problem , 2013, J. Intell. Manuf..

[18]  Amelia Bilbao-Terol,et al.  Linear programming with fuzzy parameters: An interactive method resolution , 2007, Eur. J. Oper. Res..

[19]  Manoranjan Maiti,et al.  Fixed charge transportation problem with type-2 fuzzy variables , 2014, Inf. Sci..

[20]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[21]  Abraham Charnes,et al.  The Stepping Stone Method of Explaining Linear Programming Calculations in Transportation Problems , 1954 .

[22]  Esmaile Khorram,et al.  A fuzzy bi-criteria transportation problem , 2011, Comput. Ind. Eng..

[23]  Mariano Jiménez,et al.  Ranking fuzzy numbers through the Comparison of its Expected Intervals , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  Adil Baykasoglu,et al.  Constrained fuzzy arithmetic approach to fuzzy transportation problems with fuzzy decision variables , 2017, Expert Syst. Appl..

[25]  Pankaj Gupta,et al.  An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit , 2007 .

[26]  Micheal OhEigeartaigh A fuzzy transportation algorithm , 1982 .

[27]  Ali Ebrahimnejad,et al.  New method for solving Fuzzy transportation problems with LR flat fuzzy numbers , 2016, Inf. Sci..

[28]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Dorota Kuchta,et al.  A concept of the optimal solution of the transportation problem with fuzzy cost coefficients , 1996, Fuzzy Sets Syst..