Discharge characteristic of nanosecond-pulse DBD in atmospheric air using magnetic compression pulsed power generator

Abstract Dielectric barrier discharge driven by repetitive nanosecond pulses can offer highly efficient non-thermal plasma at atmospheric pressure and is widely used for plasma applications. In this paper, the discharge is generated using a compact pulsed power generator based on one-stage magnetic compression. The output pulse can be up to 30 kV with a rise time of about 40 ns and a full width at half maximum of 70 ns. The electrical characteristics of the discharge parameters are studied by the measurement of voltage and current waveforms. The effects of applied voltage amplitude, voltage polarity, pulse repetition frequency, and barrier dielectric on discharge characteristics are investigated, respectively. The experimental results show that the discharge current, discharge power and electron density increase with the increase of the applied voltage, and the pulse repetition frequency has a slight effect on the electrical parameters. Moreover, the discharge current is influenced by the dielectric barrier, but it is not varied with the polarity of applied pulses.

[1]  Xin Dai,et al.  The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications , 2005 .

[2]  Yang Yu,et al.  A Compact Repetitive Unipolar Nanosecond-Pulse Generator for Dielectric Barrier Discharge Application , 2010, IEEE Transactions on Plasma Science.

[3]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[4]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[5]  Eva Stoffels,et al.  Superficial treatment of mammalian cells using plasma needle , 2003 .

[6]  N. Bibinov,et al.  Variations of the gas temperature in He/N2 barrier discharges , 2001 .

[7]  A. Gutsol,et al.  Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces , 2009 .

[8]  Cheng Zhang,et al.  Comparison of experiment and simulation on dielectric barrier discharge driven by 50 Hz AC power in atmospheric air , 2010 .

[9]  A. Napartovich,et al.  Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NOx and N2/O2/NOx mixtures , 2001 .

[10]  K. V. Kozlov,et al.  The barrier discharge: basic properties and applications to surface treatment , 2003 .

[11]  Guixin Zhang,et al.  Effect of dielectric barrier discharge on semiconductor Si electrode surface , 2010 .

[12]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[13]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[14]  Jichao C. Li,et al.  High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through solid-state reaction route , 2008 .

[15]  A. Chiper,et al.  On the Secondary Discharge of an Atmospheric-Pressure Pulsed DBD in He with Impurities , 2008, IEEE Transactions on Plasma Science.

[16]  Ping Yan,et al.  Electrical characterization of dielectric barrier discharge driven by repetitive nanosecond pulses in atmospheric air , 2009 .

[17]  Shuhai Liu,et al.  Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses , 2001 .

[18]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[19]  James M. Williamson,et al.  Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge , 2006 .

[20]  Cheng Zhang,et al.  Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air , 2010 .

[21]  Ken Yukimura,et al.  NOx removal using nitrogen gas activated by dielectric barrier discharge at atmospheric pressure , 2002 .

[22]  Cheng Zhang,et al.  Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[23]  R. Morent,et al.  Effects of operating parameters on plasma-induced PET surface treatment , 2008 .

[24]  Y. Ping,et al.  Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure , 2008 .

[25]  Zhi Fang,et al.  Surface Treatment of Polyethylene Terephthalate Films Using a Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air , 2010, IEEE Transactions on Plasma Science.

[26]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[27]  Shuhai Liu,et al.  Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage , 2003 .

[28]  Nikita Bibinov,et al.  On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures , 2001 .

[29]  J. Zimmermann,et al.  Focus on Plasma Medicine , 2009 .

[30]  Paul Kiekens,et al.  Non-thermal plasma treatment of textiles , 2008 .

[31]  Xinpei Lu,et al.  Effect of Nano- to Millisecond Pulse on Dielectric Barrier Discharges , 2009, IEEE Transactions on Plasma Science.

[32]  H. Baik,et al.  Experimental Analysis of Reduced Electric Field during Time-Variable Pulsed Dielectric Barrier Discharge , 2008 .

[33]  Yuan Pan,et al.  The roles of the various plasma agents in the inactivation of bacteria , 2008 .

[34]  A. Fridman,et al.  Non-thermal atmospheric pressure discharges , 2005 .

[35]  William G. Graham,et al.  Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium , 2004 .