Multiscale Modeling of Granular Flows with Application to Crowd Dynamics

In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows one to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This way it is possible to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.

[1]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[2]  Benedetto Piccoli,et al.  Effects of anisotropic interactions on the structure of animal groups , 2009, Journal of mathematical biology.

[3]  John W. Polak,et al.  New Approach to Modeling Mixed Traffic Containing Motorcycles in Urban Areas , 2009 .

[4]  L. F. Henderson On the fluid mechanics of human crowd motion , 1974 .

[5]  Rainald Löhner,et al.  On the modeling of pedestrian motion , 2010 .

[6]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[7]  R. Colombo,et al.  Existence of nonclassical solutions in a Pedestrian flow model , 2009 .

[8]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations , 2003, Multiscale Model. Simul..

[9]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[10]  V. Coscia,et al.  FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS , 2008 .

[11]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[12]  Lawrence W. Lan,et al.  Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles , 2005 .

[13]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[14]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[15]  Serge P. Hoogendoorn,et al.  Self-Organization in Pedestrian Flow , 2005 .

[16]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Bertrand Maury,et al.  Handling of Contacts in Crowd Motion Simulations , 2009 .

[18]  John B. Bell,et al.  A Hybrid Particle-Continuum Method for Hydrodynamics of Complex Fluids , 2009, Multiscale Model. Simul..

[19]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .

[20]  Serge P. Hoogendoorn,et al.  Simulation of pedestrian flows by optimal control and differential games , 2003 .

[21]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[22]  Torsten Kraft,et al.  An efficient method for coupling microscopic and macroscopic calculations in solidification modelling , 1997 .

[23]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[24]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[25]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[26]  Jörg R. Weimar Coupling microscopic and macroscopic cellular automata , 2001, Parallel Comput..

[27]  Luc Mieussens,et al.  Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..

[28]  Michael Herty,et al.  A Macro-kinetic Hybrid Model for Traffic Flow on Road Networks , 2009, Comput. Methods Appl. Math..

[29]  R. R. Krausz Living in Groups , 2013 .

[30]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[31]  Luca Bruno,et al.  An interpretative model of the pedestrian fundamental relation , 2007 .

[32]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[33]  B. Maury,et al.  A mathematical framework for a crowd motion model , 2008 .

[34]  Benedetto Piccoli,et al.  Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints , 2009, 0906.4702.

[35]  Didier Bresch,et al.  Roughness-Induced Effect at Main Order on the Reynolds Approximation , 2010, Multiscale Model. Simul..

[36]  Benedetto Piccoli,et al.  Pedestrian flows in bounded domains with obstacles , 2008, 0812.4390.

[37]  D. Helbing,et al.  Self-organizing pedestrian movement; Environment and Planning B , 2001 .