A multiple kernel framework for inductive semi-supervised SVM learning

We investigate the benefit of combining both cluster assumption and manifold assumption underlying most of the semi-supervised algorithms using the flexibility and the efficiency of multiple kernel learning. The multiple kernel version of Transductive SVM (a cluster assumption based approach) is proposed and it is solved based on DC (Difference of Convex functions) programming. Promising results on benchmark data sets and the BCI data analysis suggest and support the effectiveness of proposed work.

[1]  Yi Liu,et al.  SemiBoost: Boosting for Semi-Supervised Learning , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[3]  Yuanqing Li,et al.  A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system , 2008, Pattern Recognit. Lett..

[4]  Thomas Hofmann,et al.  Kernel Methods for Missing Variables , 2005, AISTATS.

[5]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[6]  Zenglin Xu,et al.  Simple and Efficient Multiple Kernel Learning by Group Lasso , 2010, ICML.

[7]  Zoubin Ghahramani,et al.  Learning from labeled and unlabeled data with label propagation , 2002 .

[8]  S. Sathiya Keerthi,et al.  Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..

[9]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[10]  Fei Wang,et al.  Cuts3vm: a fast semi-supervised svm algorithm , 2008, KDD.

[11]  Ying Sun,et al.  Adaptation in P300 Brain–Computer Interfaces: A Two-Classifier Cotraining Approach , 2010, IEEE Transactions on Biomedical Engineering.

[12]  Dit-Yan Yeung,et al.  Kernel selection forl semi-supervised kernel machines , 2007, ICML '07.

[13]  Alexander Zien,et al.  lp-Norm Multiple Kernel Learning , 2011, J. Mach. Learn. Res..

[14]  Wei Pan,et al.  On Efficient Large Margin Semisupervised Learning: Method and Theory , 2009, J. Mach. Learn. Res..

[15]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[16]  Dezhong Yao,et al.  Semi-Supervised Learning Based on Manifold in BCI , 2009 .

[17]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[18]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[19]  S. Sathiya Keerthi,et al.  Deterministic annealing for semi-supervised kernel machines , 2006, ICML.

[20]  Thorsten Joachims,et al.  Transductive Learning via Spectral Graph Partitioning , 2003, ICML.

[21]  Robert D. Nowak,et al.  Multi-Manifold Semi-Supervised Learning , 2009, AISTATS.

[22]  Wei Sun,et al.  A Semisupervised Support Vector Machines Algorithm for BCI Systems , 2007, Comput. Intell. Neurosci..

[23]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.

[24]  Zenglin Xu,et al.  Adaptive Regularization for Transductive Support Vector Machine , 2009, NIPS.

[25]  Bernhard Schölkopf,et al.  Robust EEG Channel Selection across Subjects for Brain-Computer Interfaces , 2005, EURASIP J. Adv. Signal Process..

[26]  W. Gander,et al.  A D.C. OPTIMIZATION ALGORITHM FOR SOLVING THE TRUST-REGION SUBPROBLEM∗ , 1998 .

[27]  Dezhong Yao,et al.  Transductive SVM for reducing the training effort in BCI , 2007, Journal of neural engineering.

[28]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[29]  Yves Grandvalet,et al.  Y.: SimpleMKL , 2008 .

[30]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[31]  M. Seeger Learning with labeled and unlabeled dataMatthias , 2001 .

[32]  M. Kloft,et al.  l p -Norm Multiple Kernel Learning , 2011 .