Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices

We demonstrate monolayer (1L) MoS2 grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~1013 cm−2) and temperatures (80–500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (>1012 cm−2). We demonstrate the highest current density reported to date (~270 μA μm−1 or 44 MA cm−2) at 300 K for an 80 nm long device from CVD-grown 1L MoS2. Using simulations, we discuss what improvements of 1L MoS2 are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.

[1]  Horst H. Berger,et al.  Models for contacts to planar devices , 1972 .

[2]  H. G. Smith,et al.  Lattice dynamics of hexagonal Mo S 2 studied by neutron scattering , 1975 .

[3]  G. Ghibaudo,et al.  A method for MOSFET parameter extraction at very low temperature , 1989 .

[4]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[5]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[6]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[7]  C. Zhi,et al.  Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes. , 2008, Journal of the American Chemical Society.

[8]  H. Riel,et al.  Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.

[9]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[10]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[11]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[12]  E. Aktürk,et al.  A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 , 2011 .

[13]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[14]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[15]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[16]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[17]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[18]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[19]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[20]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[21]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[22]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[23]  Xiaodong Li,et al.  Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles , 2013, 1301.7709.

[24]  Liying Jiao,et al.  Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. , 2013, Journal of the American Chemical Society.

[25]  Shin-Shem Pei,et al.  High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains , 2013 .

[26]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[27]  D. Jena,et al.  Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.

[28]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[29]  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. , 2014, Nature communications.

[30]  P. Ajayan,et al.  Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 , 2014 .

[31]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[32]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[33]  P. Ajayan,et al.  Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors , 2014 .

[34]  M. Seong,et al.  Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers , 2014, Nano Research.

[35]  Takhee Lee,et al.  Photoelectron spectroscopic imaging and device applications of large-area patternable single-layer MoS2 synthesized by chemical vapor deposition. , 2014, ACS nano.

[36]  Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2 , 2014, ACS nano.

[37]  Xiaodong Li,et al.  Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides , 2014, 1406.4569.

[38]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[39]  Jing Kong,et al.  Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. , 2014, Nature communications.

[40]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[41]  Shanshan Yao,et al.  Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.

[42]  Jing Zhang,et al.  Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. , 2014, ACS nano.

[43]  Oriol López Sánchez,et al.  Large-area MoS2 grown using H2S as the sulphur source , 2015 .

[44]  Eric Pop,et al.  Physics-based compact model for circuit simulations of 2-dimensional semiconductor devices , 2015, 2015 73rd Annual Device Research Conference (DRC).

[45]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[46]  P. Ajayan,et al.  Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation. , 2015, Nano letters.

[47]  Jing Zhao,et al.  Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. , 2015, Journal of the American Chemical Society.

[48]  Andras Kis,et al.  Thickness-dependent mobility in two-dimensional MoS₂ transistors. , 2015, Nanoscale.

[49]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[50]  M. Placidi,et al.  Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers , 2015, 1506.03228.

[51]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[52]  Gang Hee Han,et al.  Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations , 2015, Nature Communications.

[53]  S. Banerjee,et al.  Radio Frequency Transistors and Circuits Based on CVD MoS2. , 2015, Nano letters.

[54]  Wim Dehaene,et al.  Benchmarking of MoS2 FETs With Multigate Si-FET Options for 5 nm and Beyond , 2015, IEEE Transactions on Electron Devices.

[55]  Eric Pop,et al.  Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. , 2016, Nano letters.

[56]  Hua Yu,et al.  Integrated Flexible and High‐Quality Thin Film Transistors Based on Monolayer MoS2 , 2016 .

[57]  Paul Bã ¼ rger Silicon Vlsi Technology Fundamentals Practice And Modeling , 2016 .

[58]  Amritesh Rai,et al.  Large‐Area Monolayer MoS2 for Flexible Low‐Power RF Nanoelectronics in the GHz Regime , 2016, Advanced materials.