Voltage-clamp analysis of synaptic inhibition during long-term potentiation in hippocampus.

The excitatory synaptic response evoked by stimulating the mossy fiber synaptic input to hippocampal CA3 neurons in normally accompanied by concomitant feedforward or recurrent inhibition. The purpose of the present study was to determine whether a decrease in the inhibitory conductance of this mixed synaptic response contributes to the enhanced synaptic efficacy observed during long-term potentiation (LTP). Intracellular recordings were made from CA3 neurons of rat hippocampal brain slices. Current- and voltage-clamp measurements of the mixed excitatory/inhibitory evoked synaptic response were made, using a single-electrode clamp system. Outward and inward rectification were reduced, respectively, by intracellular injection and bath application of Cs+. Biophysical analysis of the evoked synaptic conductance sequence was performed before and 15 min to 1 h after inducing LTP. As expected, measurements made in the early part of the conductance sequence, which represents primarily the monosynaptic excitatory input, demonstrated an increase in the slope conductance during LTP. Measurements made later in the conductance sequence, when the excitatory component appeared to have declined to a negligible value, revealed no decrease in the slope conductance of the inhibitory component of the mixed response. We conclude that a decrease in the conductance associated with the inhibitory component of the mixed synaptic response plays little or no role in the increase in synaptic efficacy observed during LTP of this synaptic system.