Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreement with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density...

[1]  C. Lieber,et al.  Single‐Walled Carbon Nanotubes , 2002, Annals of the New York Academy of Sciences.

[2]  Rui Qiao,et al.  Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes , 2009 .

[3]  Peter T. Cummings,et al.  Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size , 2011 .

[4]  O. Borodin,et al.  On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces , 2011 .

[5]  Bobby G. Sumpter,et al.  Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors , 2010 .

[6]  Douglas Henderson,et al.  On the influence of ionic association on the capacitance of an electrical double layer , 2001 .

[7]  B. Sumpter,et al.  A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes. , 2011, Physical chemistry chemical physics : PCCP.

[8]  R. Ruoff,et al.  High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. , 2011, ACS nano.

[9]  Hiroyuki Ohno,et al.  Electrochemical Aspects of Ionic Liquids: Ohno/Electrochemical Aspects of Ionic Liquids , 2005 .

[10]  Douglas Henderson,et al.  The capacitance of the solvent primitive model double layer at low effective temperatures , 2000 .

[11]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[12]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[13]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[14]  A. Kornyshev,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig towards Understanding the Structure and Capacitance of Electrical Double Layer in Ionic Liquids towards Understanding the Structure and Capacitance of Electrical Double Layer in Ionic Liquids , 2022 .

[15]  J. Israelachvili Intermolecular and surface forces , 1985 .

[16]  Jan Forsman,et al.  Differential Capacitance of Room Temperature Ionic Liquids: The Role of Dispersion Forces , 2010 .

[17]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[18]  O. Borodin,et al.  Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide [Cnmim][TFSI] Ionic Liquids at Graphite Electrodes , 2012 .

[19]  S. Ye,et al.  Effects of specific adsorption on the differential capacitance of imidazolium-based ionic liquid electrolytes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  John Ralston,et al.  Differential capacitance of the double layer at the electrode/ionic liquids interface. , 2010, Physical chemistry chemical physics : PCCP.

[21]  S. Dzyuba,et al.  Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethyl-sulfonyl)imides on physical properties of the ionic liquids. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Carlos M. Pereira,et al.  The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – Effect of temperature on the differential capacitance , 2008 .

[23]  T. Kyotani,et al.  Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. , 2011, Journal of the American Chemical Society.

[24]  L. Qu,et al.  Nanocomposite Electrodes for High-Performance Supercapacitors , 2011 .

[25]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[26]  S. Baldelli Surface Structure at the Ionic Liquid—Electrified Metal Interface , 2008 .

[27]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[28]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[29]  A. A. Kornyshev,et al.  The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: Electrostriction vs. lattice saturation , 2010 .

[30]  K. Hata,et al.  Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. , 2010, Journal of the American Chemical Society.

[31]  B. Sumpter,et al.  Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. , 2012, The journal of physical chemistry letters.

[32]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[33]  John Ralston,et al.  Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature , 2008 .

[34]  Douglas Henderson,et al.  Monte Carlo study of the capacitance of the double layer in a model molten salt , 1999 .

[35]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[36]  Pierre-Louis Taberna,et al.  Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C , 2013 .

[37]  Y. Shim,et al.  Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. , 2010, ACS nano.

[38]  E. Borowiak‐Palen Single‐walled carbon nanotubes as nanotest tubes , 2007 .

[39]  Ultrathin carbon nanotube fibrils of high electrochemical capacitance. , 2009, ACS nano.

[40]  Sheng Dai,et al.  Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. , 2012, The journal of physical chemistry letters.

[41]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[42]  Bingqing Wei,et al.  Effect of temperature on the capacitance of carbon nanotube supercapacitors. , 2009, ACS nano.

[43]  Renata Costa,et al.  Double layer in room temperature ionic liquids: influence of temperature and ionic size on the differential capacitance and electrocapillary curves. , 2010, Physical chemistry chemical physics : PCCP.

[44]  Sheng Dai,et al.  The importance of ion size and electrode curvature on electrical double layers in ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[45]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[46]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[47]  P. Kamat Graphene-Based Nanoassemblies for Energy Conversion , 2011 .

[48]  O. Borodin,et al.  Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[49]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[50]  Oleg Borodin,et al.  Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. , 2010, Journal of the American Chemical Society.

[51]  T. Ohsaka,et al.  Measurements of Differential Capacitance at Mercury/Room-Temperature Ionic Liquids Interfaces , 2007 .

[52]  O. Borodin Polarizable force field development and molecular dynamics simulations of ionic liquids. , 2009, The journal of physical chemistry. B.

[53]  Peter T Cummings,et al.  Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. , 2012, Journal of chemical theory and computation.

[54]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .