Photochemical escape of oxygen from Mars: First results from MAVEN in situ data

Photochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 × 1025 s−1, depending on season and EUV flux, consistent with several pre‐MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern‐era average escape rate of 4.3 × 1025 s−1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483 mbar of oxygen over 1–3 and 3.5 Gyr, respectively, with uncertainties significantly increasing with time in the past.

[1]  B. Jakosky,et al.  The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results , 2017 .

[2]  B. Jakosky,et al.  MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape , 2017 .

[3]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[4]  F. Duru,et al.  Solar Wind Interaction and Atmospheric Escape , 2017 .

[5]  B. Jakosky,et al.  Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance , 2017 .

[6]  B. Jakosky,et al.  Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating , 2016 .

[7]  B. Jakosky,et al.  Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft , 2016 .

[8]  Arnett,et al.  The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .

[9]  F. Montmessin,et al.  The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission , 2015 .

[10]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[11]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[12]  Bruce M. Jakosky,et al.  First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .

[13]  B. Jakosky,et al.  The first in situ electron temperature and density measurements of the Martian nightside ionosphere , 2015 .

[14]  B. Jakosky,et al.  Ionospheric plasma density variations observed at Mars by MAVEN/LPW , 2015 .

[15]  B. Jakosky,et al.  MAVEN IUVS observation of the hot oxygen corona at Mars , 2015 .

[16]  B. Jakosky,et al.  MAVEN insights into oxygen pickup ions at Mars , 2015 .

[17]  B. Jakosky,et al.  A comparison of 3‐D model predictions of Mars' oxygen corona with early MAVEN IUVS observations , 2015 .

[18]  B. Jakosky,et al.  Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument , 2015 .

[19]  B. Jakosky,et al.  Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation , 2015, Geophysical research letters.

[20]  B. Jakosky,et al.  The MAVEN Solar Energetic Particle Investigation , 2015 .

[21]  V. Tenishev,et al.  Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere , 2015 .

[22]  F. LeBlanc,et al.  Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN , 2015 .

[23]  R. Ergun,et al.  The Langmuir Probe and Waves (LPW) Instrument for MAVEN , 2015 .

[24]  T. Woods,et al.  The Solar Extreme Ultraviolet Monitor for MAVEN , 2015 .

[25]  P. Withers,et al.  An empirical model of the extreme ultraviolet solar spectrum as a function of F10.7 , 2015 .

[26]  H. Lammer,et al.  The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star , 2015, 1504.04546.

[27]  M. Gudel,et al.  Stellar winds on the main-sequence - II. The evolution of rotation and winds , 2015, 1503.07494.

[28]  W. Huebner,et al.  Photoionization and photodissociation rates in solar and blackbody radiation fields , 2015 .

[29]  F. Tian,et al.  Photochemical escape of oxygen from early Mars , 2015, 1501.04423.

[30]  Zhi-Yun Li,et al.  Testing protostellar disk formation models with ALMA observations , 2015, 1501.01417.

[31]  Helmut Lammer,et al.  Hot oxygen and carbon escape from the martian atmosphere , 2014, 1911.01107.

[32]  M. Grott,et al.  A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .

[33]  A. Hać,et al.  The escape of O from Mars: Sensitivity to the elastic cross sections , 2014 .

[34]  Francisco Gonzalez-Galindo,et al.  Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km , 2013 .

[35]  Robert J. Lillis,et al.  Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions , 2013 .

[36]  R. Lillis,et al.  Three‐dimensional multifluid modeling of atmospheric electrodynamics in Mars' dynamo region , 2013 .

[37]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[38]  C. Wright A one-year seasonal analysis of martian gravity waves using MCS data , 2012 .

[39]  Carol S. Paty,et al.  On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars , 2012, Earth, Planets and Space.

[40]  A. Medvedev,et al.  Thermal effects of internal gravity waves in the Martian upper atmosphere , 2012 .

[41]  Matthew O. Fillingim,et al.  Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons , 2011 .

[42]  Donald A. Gurnett,et al.  Areas of enhanced ionization in the deep nightside ionosphere of Mars , 2011 .

[43]  A. Safaeinili,et al.  Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux , 2010 .

[44]  G. P. D. Mello,et al.  EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES. II. κ1 Ceti, AN ANALOG OF THE SUN WHEN LIFE AROSE ON EARTH , 2010 .

[45]  A. Nagy,et al.  A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions , 2010 .

[46]  A. Hać,et al.  Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method , 2009 .

[47]  A. Nagy,et al.  Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history , 2009 .

[48]  A. Nagy,et al.  Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions , 2009 .

[49]  Paul Withers,et al.  A review of observed variability in the dayside ionosphere of Mars , 2009 .

[50]  E. Nielsen,et al.  Variation of the Martian Ionospheric Electron Density from Mars Express Radar Soundings , 2008 .

[51]  Helmut Lammer,et al.  Atmospheric Escape and Evolution of Terrestrial Planets and Satellites , 2008 .

[52]  D. Mitchell,et al.  Electron reflectometry in the martian atmosphere , 2008 .

[53]  R. E. Johnson,et al.  Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .

[54]  J. Berthelier,et al.  Martian corona: Nonthermal sources of hot heavy species , 2007 .

[55]  W. J. van der Zande,et al.  Electron energy-dependent product state distributions in the dissociative recombination of O2+. , 2005, The Journal of chemical physics.

[56]  R. Hodges The rate of loss of water from mars , 2002 .

[57]  Jhoon Kim,et al.  Hot carbon densities in the exosphere of Venus , 2001 .

[58]  A. Dalgarno,et al.  Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere , 2000 .

[59]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[60]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[61]  Jhoon Kim,et al.  Solar cycle variability of hot oxygen atoms at Mars , 1998 .

[62]  N. Balakrishnan,et al.  Quantum mechanical and semiclassical studies of N+N2 collisions and their application to thermalization of fast N atoms , 1998 .

[63]  Esposito,et al.  The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor , 1998, Science.

[64]  T. Ayres Evolution of the solar ionizing flux , 1997 .

[65]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[66]  A. Nier,et al.  Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1 , 1976, Science.

[67]  Stewart,et al.  Enhanced O 2 + Loss at Mars due to an Ambipolar Electric Field 1 from Electron Heating 2 , 2016 .

[68]  V. Shematovich,et al.  Stochastic models of hot planetary and satellite coronas: A photochemical source of hot oxygen in the upper atmosphere of Mars , 2005 .

[69]  A. Nagy,et al.  Hot Carbon Densities in the Exosphere of Mars Hot Carbon Densities in the Exosphere of Mars , 2001 .

[70]  H. E. Hinteregger,et al.  Representations of solar EUV fluxes for aeronomical applications , 1981 .